
Acta Math. Univ. Comenianae
Vol. LXXXVIII, 3 (2019), pp. 967–972

967

ON UNIT GRID INTERSECTION GRAPHS AND SEVERAL

OTHER INTERSECTION GRAPH CLASSES

I. MUSTAT, Ă and M. PERGEL

Abstract. We explore what could make recognition of particular intersection-

defined classes hard. We focus mainly on unit grid intersection graphs (UGIGs),
i.e., intersection graphs of unit-length axis-aligned segments and grid intersection

graphs (GIGs, which are defined like UGIGs without unit-length restriction). As

side effects we obtain several further nontrivial results.
We show that the explored graph classes are NP-hard to recognized even when

restricted to graphs with arbitrarily large girth, i.e., length of a shortest cycle.

Next we show that the recognition of these classes remains hard even for graphs
with restricted degree (4, 5 and 8 depending on a particular class). For UGIGs we

present structural results on the size of a possible representation, too.

1. Introduction

Geometric intersection graphs are graphs with a geometric representation where
each vertex is represented by a geometric object and the adjacency of a pair of
vertices corresponds to the fact that the objects have a nonempty intersection.
They are a practically important part of graph theory as some generally hard
problems become efficiently solvable on some intersection classes. These efficient
algorithms usually require an intersection representation instead of a graph, which
motivates the recognition problem, i.e., the question of whether a given graph has
a desired intersection representation.

Our attention focuses on unit grid intersection graphs, called UGIG, i.e., inter-
section graphs of unit-length axis-aligned line segments in the plane. Our results
have influence even on other graph-classes, namely on grid intersection graphs that
we denote as GIG defined similarly to UGIG, just without the restriction to unit
length [1, 4, 10]. Grid intersection graphs have been studied also as PURE-2-DIR
or B0-VPG. Obviously UGIGs form a subclass of GIGs. GIGs can be generalized
to segment graphs, intersection graphs of straight-line segments in the plane. The
topological versions of segment graphs are pseudosegment graphs where pseudoseg-
ments do not have to be straight, they just have to keep the topological properties
of segments [2]. Even this class can be generalized to the class of string graphs,
intersection graphs of arc-connected curves in the plane [5].

Received May 24, 2019.
2010 Mathematics Subject Classification. Primary 97P20, 97K20, 97K30, 03D15.
This research was partially supported by the Czech Science Foundation grant GA19-08554S.



968 I. MUSTAT, Ă and M. PERGEL

As there exist many classes of intersection graphs, it is useful to avoid exploring
each class separately. For optimization problems, typically an efficient algorithm
for a superclass yields an algorithm for subclasses. For the recognition problem this
is not true. Due to this fact, sandwiching was introduced [7]. It is an approach close
to approximability/inapproximability. A class B is sandwiched between classes A
and C, if A ⊆ B ⊆ C. Given a reduction that produces either graphs from A or
not even graphs from C, this reduction shows hardness for all classes sandwiched
between A and C.

About the recognition of the mentioned classes, many results are known. The
recognition problem of string graphs is NP-complete even for graphs without tri-
angles [9, 6], for segment and pseudosegment graphs the problem is known to be
NP-hard even for graphs with arbitrarily large girth [7], it is not known whether
the problem is in NP and Cartesian coordinates of endpoints of particular segments
in a representation cannot be used as a polynomial certificate of representability
[8]. It is known that GIGs are NP-complete to get recognized [5]; the same article
shows that any class between 3-DIR (intersection graphs of straight line segments
each using one of three permitted directions) is NP-hard to recognize.

Because for many intersection-defined classes the recognition problem is hard,
we are trying to explore the reasons. The idea behind graphs without triangles
or with high girth is that it is some form of density (of edges) that makes the
recognition hard. This holds, e.g., for polygon-circle graphs, not, e.g., segment
graphs [7]. As the “density” tries to restrict the number of edges, we tried to
restrict it by bounding the maximum degree (as it efficiently bounds the number
of edges in the graph). We show that all explored classes are rather resistant to
this criterion.

2. The results

Our main result whose proof we sketch in the following section is:

Theorem 1. Between the following three pairs of graph-classes no polynomially
recognizable class can be sandwiched even when restricted on graphs with arbitrarily
large girth and yet on graphs with the maximum degree (at most) 5, 4 and 8,
respectively:

• UGIG and pseudosegment graphs,
• GIG and segment graphs,
• GIG and string graphs.

In the rest of this section we show upper and lower bound on the size of a UGIG
representation:

Proposition 1. Any unit grid intersection graph on n vertices can be repre-
sented in a grid (n+1)×(n+1) with all coordinates being multiples of 1

n . Moreover,
we can find such a representation that with respect to each axis no two segments
have the same non-integral part of the coordinate.



ON UNIT GRID INTERSECTION GRAPHS 969

(a)
(b)

(c)

(d)

−1 − 2
3 −

1
3

0 1
3

2
3

−1− 3
4−

1
2−

1
4

0 1
4

1
2

3
4

(e)

− 1
2−

1
4

0 1
4

1
2

3
4

Figure 1. Considering the arrangement from picture (a) we make a projection onto one axis

(b), i.e. perpendicular segments collapse into single points. We extend them in one direction (in
our case to the left), see picture (c). Picture (d) shows the last iteration of the fourth step of

the sweeping algorithm, i.e. extending the so far obtained representation. Picture (e) shows the

final representation (after having also swept along the y-axis).

Note that the lower bound for the granularity (multiples of 1
n ) is tight because

of K1,n−1 which requires this precision for the (distinct) coordinates.

Proof. Will be in the journal version, sketched by Figure 1. �

. . .

Tn Tn Tn

v1
v2 v16

v17. . .
v1 v2 v16n+1

T2 = Tn+1 =

r r

Figure 2. Constructing the family of trees.

In the sequel, we define the boundary size as the semiperimeter of the bounding
rectangle and by induction (details will be in the journal version) show for trees
from Figure 2:

Theorem 2. For all n ≥ 2, a UGIG representation of Tn needs a boundary
size of at least n.

As a corollary of Proposition 1, Theorem 1 and a trivial observation, classes
UGIG and GIG are NP-complete to recognize even with arbitrarily large girth.

3. The reductions

Here, we sketch the proof of Theorem 1. We reduce planar 3-connected 3-SAT(4)
shown to be NP-complete [6]. This is a special version of 3-SAT where each vari-
able occurs at most 4 times and the incidence graph (of the formula) is planar and
3-connected (3-connectivity implies a unique planar embedding up to the outer
face). The incidence graph is bipartite with one part formed by variables, the
other by clauses and an edge means a presence of a variable in a clause. We follow



970 I. MUSTAT, Ă and M. PERGEL

the ideas of [7, 3], i.e., for a planar embedding of the incidence graph, vertex repre-
sentatives get represented by variable-gadgets or truth-splitters, clause representa-
tives we replace by clause gadgets and the edges (of the incidence graph) we replace
by pairs of paths whose left-right orientation represent the truth-assignment.

Variable-gadgets must keep the occurrences synchronized, clause-gadgets must
be representable exactly for 7 satisfiable assignments. For the 1st case, as a variable
gadget we take two vertices connected by an edge and each pair representing an
occurrence stems from them to incur the situation of Figure 4. A clause-gadget
is depicted in Figure 3, dashed curves depict arbitrarily long paths. For the 2nd
case we use the same clause-gadget, but to decrease the maximum degree in the
variable-gadget, we stick the 1st and the 2nd occurrence together and we represent
the 3rd and 4th by the truth-splitter as depicted in Figure 5 without vertex c. For
the 3rd case, we use the truth-splitter in Figure 5 (including vertex c) and a
clause-gadget from Figure 6.

(¬v2 ∨ v3 ∨ ¬v4) v2

(¬v1 ∨ v2 ∨ ¬v4)v4

v3

v1
(¬v1 ∨ ¬v3 ∨ v4)

(v1 ∨ v2 ∨ v3)

a1

a2

a1

a2

r1
b1

r2b2
r3
b3

r4
b4 b1

r1

b2
r2

b3
r3

b4 r4
r1
b1

r2b2

r3
b3

r4b4

r4
b4

r3 b3

r2
b2

r1b1

Figure 3. Left: Incidence graph for a formula (v1 ∨ v2 ∨ v3) ∧ (¬v2 ∨ v3 ∨ ¬v4) ∧ (¬v1 ∨ v2 ∨
¬v4) ∧ (¬v1 ∨ ¬v3 ∨ v4) (here we have identified the vertex names with the variables/clauses).

Middle: Subgraph of the incidence graph for v1 ∨ v2 ∨ v3. Right: The corresponding subgraph

whose representability we explore. This subgraph shows the part inside the red dashed triangle
in the left picture. Left-right orientation of blue and red vertices/paths determines the truth

assignment .

v1

v2

v3

v1 ∨ v2 ∨ v3

Γ(v1)

Γ(v3)
Γ(v2)

Figure 4. The two distinct representations of the four occurrences incident to a variable gadget.

The left pair is a pseudosegment representation, the right one a UGIG representation. In each
pair, the left corresponds to the FALSE assignment, the right one to the value TRUE.



ON UNIT GRID INTERSECTION GRAPHS 971

a

b

c

1st occurence

3rd occurence

2nd occurence 2nd occ.

a

b

1st occ.

c

abc 1st occ.

Figure 5. Truth-splitter gadget. First occurrence always goes to the right, second to the left,

third upwards. Left: GIG representation, middle: string representation, right: the appropriate
graph.

Figure 6. Clause gadget for string graphs. Note that the vertex with maximum degree corre-
sponds to the top green curve (left: representation, right: graph).

4. Conclusion and open problems

We have defined a new measure that can influence the hardness of the recognition
problem for graph classes whose recognition is generally hard and we tried to get
as tight results for particular graph classes as possible. For several classes, we have
almost succeeded, usually 1 or 2 values are unclear. This fact motivates the open
problems:

What is the complexity of recognizing for string graphs, segment graphs and
GIGs (and preferably all classes between them) when we restrict our attention to
graphs with maximum degree 3? How does the answer change when we restrict
only to graphs with large girth (note that our reductions are meeting both criteria
simultaneously)? We may also ask, what is the complexity of recognizing UGIGs
with maximum degree 3 or 4 (both are open so far, our reduction works for degree
at least 5). Further we may ask the same problem for string graphs with arbitrarily
large girth and maximum degrees from 3 to 7.

For what graph classes does this new measure help more and which classes
remain hard even with low degrees? What happens, e.g., with polygon-circle



972 I. MUSTAT, Ă and M. PERGEL

graphs (that can be polynomially recognized when restricted on graphs with girth
at least 6) where the reduction requires vertices of high degree?

What makes the recognition problem hard - namely for all classes between GIGs
and pseudosegments?

Thanks to Adam Dingle for proofreading the text.

References

1. Chaplick S., Hell P., Otachi Y., Saitoh T. and Uehara R., Ferrers dimension of grid intersec-

tion graphs, Discrete Appl. Math. 216 (2017), 130–135.
2. Dangelmayr C., Felsner S. and Trotter W. T., Intersection graphs of pseudosegments: Chordal

graphs, J. Graph Algorithms Appl. 14 (2010), 199–220.
3. Felsner S., Mustata I. and Pergel M., The complexity of the partial order dimension problem:

Closing the gap, SIAM J. Discrete Math. 31 (2017), 172–189.

4. Hartman I. B.-A., Newman I. and Ziv R., On grid intersection graphs, Discrete Math. 87
(1991), 41–52.

5. Kratochv́ıl J., String graphs. II. Recognizing string graphs is np-hard, J. Combin. Theory Ser.

B 52 (1991), 67–78.
6. Kratochv́ıl J., A special planar satisfiability problem and a consequence of its np-completeness,

Discrete Appl. Math. 52 (1994), 233–252.

7. Kratochv́ıl J. and Pergel M., Geometric intersection graphs: Do short cycles help?, in: Com-
puting and Combinatorics, COCOON 2007 (Lin G., eds.), Lecture Notes in Comput. Sci.

4598, Springer, 2007, 118–128

8. Kratochv́ıl J. and Matoušek J., Intersection graphs of segments, J. Combin. Theory Ser. B
62 (1994), 289–315.

9. Schaefer M., Sedgwick E. and Štefankovič D., Recognizing string graphs in np, J. Comput.
System Sci. 67 (2003), 365–380.

10. Uehara R., Simple geometrical intersection graphs, in: WALCOM: Algorithms and Compu-

tation, WALCOM 2008 (Nakano S., Rahman M.S., eds), Lecture Notes in Comput. Sci. 4921,
Springer, 25–33.

I. Mustat, ă, Berlin Institute of Technology, Institut für Mathematik, Berlin, Germany; funded by

Berlin Math. School,
e-mail : innereyes@gmail.com

M. Pergel, Department of Software and Computer Science Education (KSVI), Charles University,

Prague, Czech Republic,

e-mail : perm@kam.mff.cuni.cz


