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ON ORTHOGONAL SYMMETRIC CHAIN DECOMPOSITIONS

K. DÄUBEL, S. JÄGER, T. MÜTZE and M. SCHEUCHER

Abstract. The n-cube is the poset obtained by ordering all subsets of {1, . . . , n}
by inclusion, and it can be partitioned into

( n
bn/2c

)
chains, which is the minimum

possible number. Two such decompositions of the n-cube are called orthogonal if

any two chains of the decompositions share at most a single element. Shearer and
Kleitman conjectured in 1979 that the n-cube has bn/2c + 1 pairwise orthogonal

decompositions into the minimum number of chains, and they constructed two such

decompositions. Spink recently improved this by showing that the n-cube has three
pairwise orthogonal chain decompositions for n ≥ 24. In this paper, we construct

four pairwise orthogonal chain decompositions of the n-cube for n ≥ 60. We also
construct five pairwise edge-disjoint symmetric chain decompositions of the n-cube

for n ≥ 90, where edge-disjointness is a slightly weaker notion than orthogonality,

improving on a recent result by Gregor, Jäger, Mütze, Sawada, and Wille.

1. Introduction

The n-dimensional cube Qn, or n-cube for short, is the poset obtained by taking all
subsets of [n] := {1, . . . , n}, and ordering them by inclusion. This poset is some-
times also called the subset lattice or the Boolean lattice, and it is a fundamental
and widely studied object in combinatorics. For illustration, Figure 1 shows the
Hasse diagram of the 4-cube.

Clearly, Qn is a graded poset with rank function given by the set sizes, and
every maximal chain has size n + 1. We refer to the family of all subsets of a
fixed size k ∈ {0, . . . , n} as the kth level of Qn. It is easy to see that Qn has a
unique largest level n/2 for even n, and two largest levels bn/2c and dn/2e for
odd n. We refer to these levels as middle levels. Sperner’s classical theorem [31]
asserts that each middle level is in fact a largest antichain of Qn, i.e., Qn has
width an :=

(
n

bn/2c
)
. As a consequence, at least an many chains are needed to par-

tition Qn, and by Dilworth’s theorem [7], a partition into this many chains indeed
exists. De Bruijn, van Ebbenhorst Tengbergen, and Kruiswijk [5] first described
an inductive construction of a partition of Qn into an many chains that are all sym-
metric and saturated, i.e., every chain starts and ends in symmetric levels around
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Figure 1. Hasse diagram of the 4-cube Q4, with three pairwise orthogonal decompositions into

6 chains, highlighted by thick solid, dashed, and dotted lines.

the middle, and no chain skips any intermediate levels. Throughout this paper,
we will refer to their decomposition as the standard decomposition. Lewin [25],
Aigner [2], and White and Williamson [34] gave alternative descriptions of the
standard decomposition via greedy matching algorithms as well as explicit local
rules to follow the chains in the standard decomposition. The easiest-to-remember
local rule using parenthesis matching was given by Greene and Kleitman [13]. The
standard decomposition of Qn was famously used by Kleitman [21] to prove the
two-dimensional case of the Littlewood-Offord conjecture on signed sums of vec-
tors [26] (later proved in all dimensions by Kleitman [22]).

Shearer and Kleitman [30] were the first to investigate chain decompositions
of the n-cube that are different from the aforementioned standard decomposition.
They proved that, when picking subsets x, y ⊆ [n] at random, the probability
that x ⊆ y is at least 1/an, for every probability distribution on Qn. Their proof
introduces the notion of orthogonal chain decompositions. Formally, two decom-
positions of Qn into an (not necessarily symmetric or saturated) chains are called
orthogonal if every two chains from the two decompositions have at most a single
element of Qn in common. For example, Figure 1 shows three pairwise orthogonal
chain decompositions into 6 chains in Q4. Shearer and Kleitman conjectured that
Qn admits bn := bn/2c+1 pairwise orthogonal chain decompositions for all n ≥ 1.
As a warm-up exercise, we verified their conjecture for n ≤ 7 with computer help.
It is easy to check that there are at most bn pairwise orthogonal decompositions
(consider the node degrees in the Hasse diagram around the middle levels).

As a first step towards their conjecture, Shearer and Kleitman established the
existence of two orthogonal chain decompositions for all n ≥ 2. They proved
this by showing that the standard decomposition and its complement, obtained
by taking the complements of all sets with respect to the full set [n], are almost-
orthogonal. Formally, we say that two decompositions of Qn into an symmetric
and saturated chains are almost-orthogonal if every two chains from the two de-
compositions have at most a single element of Qn in common, with the exception
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of the two unique chains of size n+ 1, which are only allowed to intersect in their
minimal and maximal elements ∅ and [n]. It is straightforward to verify that
for n ≥ 5, every family of almost-orthogonal decompositions can be modified to
orthogonal decompositions, by moving the empty set ∅ in all but one of the de-
compositions from the unique longest chain to a shortest chain, one decomposition
at a time (see [30, 32] for details).

Recently, Spink [32] made the first progress towards the Shearer-Kleitman con-
jecture from 1979 by proving that Qn has three pairwise orthogonal chain de-
compositions for n ≥ 24. He actually showed that Qn has three almost-orthogonal
decompositions into symmetric and saturated chains, from which the result follows
as described before.

Our results

Using Spink’s product construction, we improve on his result as follows.

Theorem 1. For all n ≥ 60, the n-cube has four pairwise almost-orthogonal de-
compositions into symmetric and saturated chains, and consequently four pairwise
orthogonal chain decompositions.

A slightly weaker notion than almost-orthogonality was introduced in a recent
paper by Gregor, Jäger, Mütze, Sawada, and Wille [14]. We refer to any cover
relation x ⊆ y as an edge (x, y) (y is one level above x), and we say that two
decompositions of Qn into an symmetric and saturated chains are edge-disjoint
if the two decompositions do not share any edges. Equivalently, the two decom-
positions form edge-disjoint paths in the cover graph of Qn, which is the graph
formed by all cover relations. By this definition, every pair of almost-orthogonal
chain decompositions is edge-disjoint, but not necessarily vice versa. The main
application of edge-disjoint chain decompositions in [14] was to construct cycle
factors in subgraphs of Qn induced by an interval of levels around the middle,
with the goal of generalizing the recent proof of the middle levels conjecture by
Mütze [27] (see also [15]). It is also easy to check that Qn admits at most bn
pairwise edge-disjoint chain decompositions. The authors of [14] conjectured that
this bound can be achieved for all n ≥ 1. They verified this conjecture for n ≤ 7,
and proved that Qn has four pairwise edge-disjoint decompositions for n ≥ 12.
We improve on this result as follows.

Theorem 2. For all n ≥ 90, the n-cube has five pairwise edge-disjoint decom-
positions into symmetric and saturated chains.

Unless stated otherwise, all chains we consider in the following are symmetric
and saturated, and we will from now on omit those qualifications. Moreover, we
refer to any decomposition of Qn into symmetric and saturated chains as an SCD.
Also, when referring to a family of pairwise almost-orthogonal or pairwise edge-
disjoint SCDs, we will from now on omit the qualification ‘pairwise’.
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Table 1. Number of almost-orthogonal and edge-disjoint SCDs of Qn for n ≤ 25. Entries

with * are new compared to the earlier results from [32] and [14]. For n ≤ 11, the corresponding

families of SCDs are provided electronically on the third authors’ website [1] and on the arXiv [6].
For n ≥ 12, they are obtained via the product constructions presented in [32] and [14].

n 1 2 3 4 5 6 7 8 9 10 11

almost-orthogonal SCDs 1 2 2 2 3 3* 4* 3* 3* 3 4*

edge-disjoint SCDs 1 2 2 3 3 4 4 4 4* 5* 6*

upper bound bn = bn/2c+ 1 1 2 2 3 3 4 4 5 5 6 6

· · ·

· · ·

12 13 14 15 16 17 18 19 20 21 22 23 24 25

3 3* 4* 3 3* 3 4* 3 3 4* 4* 3* 3 4*

4 4 4 4 4 4 4 4 5* 5* 6* 4 4 4

7 7 8 8 9 9 10 10 11 11 12 12 13 13

Small dimensions

Table 1 summarizes what is known for small values of n. Specifically, the ta-
ble shows the maximum numbers of almost-orthogonal and edge-disjoint SCDs
of Qn that we know for n ≤ 25, together with the upper bound bn. As indicated
in the table, we actually found six edge-disjoint SCDs of Q11, which, using the
product construction from [14], yields six edge-disjoint SCDs for all dimensions
n = 11k, k ∈ N. To extend this result to all but finitely many dimensions, thus
improving Theorem 2, we would only need to find six edge-disjoint SCDs of Qn

for some dimension n not of this form. It is also interesting to note that there
are no three almost-orthogonal SCDs of Q4 (see [32]), i.e., in this case the triv-
ial upper bound bn cannot be achieved. Nevertheless, there are three orthogonal
decompositions using non-symmetric chains in Q4 – see Figure 1 – so this shows
that not every family of orthogonal chain decompositions can be obtained from
almost-orthogonal SCDs. Our lower bounds in the table for edge-disjoint SCDs
differ from the upper bound bn by 1 exactly for the dimensions n = 8, 9, 10 – see
the values in the dotted box – and they cannot be improved by our methods.

Related work

There is a considerable amount of literature on partitioning the n-cube using
possibly non-symmetric and/or non-saturated chains. One of the most interesting
open problems in this direction is a well-known conjecture of Füredi [12] (cf. [17]),
which asserts that Qn can be decomposed into an (not necessarily symmetric or
saturated) chains whose sizes differ by at most 1, so their size is 2n/an rounded
up or down, which is approximately

√
πn(1 + o(1)). Tomon [33] recently made

some progress towards this conjecture, by showing that for large enough n, the
n-cube can be decomposed into an chains whose size is between 0.8

√
n and 13

√
n.

Another remarkable result, recently shown by Gruslys, Leader, and Tomon [18],
is that for large enough n, the n-cube can be partitioned into copies of any fixed
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poset P , provided that the number of elements of P is a power of 2 and that P
has a unique minimal and maximal element. Pikurkho [28] showed that all edges
of the n-cube can be partitioned into symmetric chains, but it is not clear whether
some of those chains can be selected to form one or more SCDs.

Griggs, Killian, and Savage first constructed an explicit SCD of the necklace
poset Nn [16] when the dimension n is a prime number, with the goal of construct-
ing rotation-symmetric Venn diagrams for n curves in the plane. Their result was
later generalized by Jordan [20] to all n ∈ N, and to even more general quotients
of Qn by Duffus, McKibben-Sanders, and Thayer [9]. All these constructions
for Nn proceed by taking suitable subchains from the standard SCD of Qn.

As we employ SAT solvers in our work, we conclude this section by listing some
recent results where they were used successfully to tackle difficult problems in
(extremal) combinatorics, either by using them to find a solution, or to prove that
no solution exists. Fujita [11] established a new lower bound R(4, 8) ≥ 58 for the
classical Ramsey numbers. Similarly, Dransfield, Liu, Marek, and Truszczyński [8]
derived improved bounds for van der Waerden numbers (see also [19] and [24]).
Another recent result that received considerable attention is described in the paper
by Konev and Lisitsa [23] on the Erdős discrepancy conjecture. SAT solvers have
also been used in the context of geometry, specifically for tackling Erdős-Szekeres
type questions, see the papers by Balko and Valtr [4] and by Scheucher [29].
Moreover, with their help researchers were able to find new coil-in-the-box Gray
codes [36] and to compute pairs of orthogonal diagonal Latin squares [35].

2. Proof ideas

We now outline the main ideas for proving Theorems 1 and 2. For details, see the
preprint version of this paper [6].

Product constructions

We compute families of s = 4 almost-orthogonal and s = 5 edge-disjoint SCDs,
for two cubes Qa and Qb of small coprime dimensions a and b. Specifically, these
dimensions will be (a, b) = (7, 11) and (a, b) = (10, 11), respectively; see the shaded
entries in Table 1. Using the product constructions presented in [32] and [14], we
obtain s SCDs of the corresponding type in Qn for all dimensions n that are non-
negative integer combinations of a and b, in particular for all n ≥ (a−1)(b−1). This
evaluates to n ≥ 60 and n ≥ 90 for the aforementioned pairs (a, b), respectively.

Problem reduction via the necklace poset

To find families of SCDs in cubes of small fixed dimension (n = 7, 10, and 11)
that satisfy the desired constraints, we reduce the search space to a much smaller
poset, the so-called necklace poset. Given a subset x ⊆ [n], we write σ(x) for the
subset obtained from x by cyclically renaming elements 1 → 2 → · · · → n → 1.
The family 〈x〉 of all subsets obtained by repeatedly applying σ to x is referred
to as the necklace containing x. We say that the necklace 〈x〉 is full if |〈x〉| = n,
and deficient if |〈x〉| < n. For example, for n = 4 the necklace 〈{1,3,4}〉 =
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〈{1,2,3,4,5}〉

〈{1,2,3,4}〉

〈{1}〉

〈∅〉

〈{1,2,3}〉

〈{1,2}〉
〈{1,3}〉

〈{1,3,4}〉

∅
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{4,5}

{3}
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Figure 2. Unrolling an SCD of the necklace poset N5 (left) to an SCD of the 5-cube (right). The

SCD is dotted; full and deficient necklaces are indicated by filled or empty bullets, respectively.

Complementing the resulting SCD of Q5 yields another edge-disjoint SCD (dashed).

{{1,3,4}, {2,4,1}, {3,1,2}, {4,2,3}} is full, and the necklace 〈{1,3}〉 = {{1,3}, {2,4}}
is deficient. As the cardinality of any necklace divides n, 〈∅〉 and 〈[n]〉 are the only
deficient necklaces if n is a prime number. The necklace poset Nn is the set of
all necklaces 〈x〉, x ⊆ [n], and its cover relations are all pairs (〈x〉, 〈y〉) for which
(x, y) is a cover relation in the n-cube; see Figure 2.

As σ preserves the set size, Nn inherits the level structure from Qn, and notions
such as symmetric chains and SCDs translate to Nn in the natural way. Moreover,
as almost all necklaces of Nn are full, Nn is by a factor of n(1 − o(1)) smaller
than Qn, which turns out to be crucial for our computer searches for SCDs. We
say that a chain inNn is unimodal if its minimal and maximal element are necklaces
of the same size (possibly deficient), and all other elements are full necklaces. In
particular, if n is a prime number, then all chains are unimodal. We can unroll
each unimodal chain in the necklace poset to multiple chains in Qn as follows: Let
(y0, . . . , yk+1) be a unimodal chain in Nn with y0 and yk+1 of size d ≤ n. Then
there are necklace representatives (x0, . . . , xk+1) with xi ∈ yi for 0 ≤ i ≤ k+1, such
that σi(x0, . . . xk+1) for i = 0, . . . , d− 1, and σi(x1, . . . , xk) for i = d, . . . , n− 1, is
a family of disjoint chains in Qn that visit exactly all elements from y0∪· · ·∪yk+1.
Moreover, if we have an SCD of Nn consisting only of unimodal chains, then
we can unroll each of its chains to obtain an SCD of Qn; see Figure 2. We
also introduce a suitable notion of edge multiplicities for the necklace poset (as
indicated in Figure 2), which allows us to find multiple edge-disjoint SCDs in Nn

simultaneously, and to unroll them to multiple edge-disjoint SCDs in Qn.

Using SAT solvers

To search multiple edge-disjoint SCDs in the necklace posetNn for some small fixed
dimension n, we formulate this problem as a propositional formula in conjunctive
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normal form (CNF), and compute solutions using the SAT solvers Glucose [3]
and MiniSat [10]. In our CNF formula, we use Boolean variables that indicate
whether certain nodes and edges belong to a particular SCD, and we introduce
clauses ensuring that in a satisfying variable assignment, all chains are unimodal
and multiple SCDs are edge-disjoint. Once a valid variable assignment is found, we
use incremental CNF augmentation to enforce the remaining properties, in partic-
ular almost-orthogonality of the unrolled SCDs in Qn. Specifically, if we encounter
a violation, we add an additional clause that prevents this particular configura-
tion. We solve the augmented CNF using an incremental SAT solver, until we
either find a feasible solution or obtain a formula with no satisfying assignment.
This approach keeps the size of the generated CNFs and of the computation time
small, as the solvers can reuse structural information of the CNFs, rather than
recomputing a solution from scratch. The size of the formulas can be reduced
further by prescribing some particularly nice SCDs.
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