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THE EVOLUTION OF RANDOM GRAPHS

ON SURFACES OF NON-CONSTANT GENUS

C. DOWDEN, M. KANG, M. MOSSHAMMER and P. SPRÜSSEL

Abstract. Given a graph G, the genus of G denotes the smallest integer g for

which G can be drawn on the orientable surface of genus g without crossing edges.

For integers g,m ≥ 0 and n > 0, we let Sg(n,m) denote the graph taken uniformly
at random from the set of all graphs on {1, 2, . . . , n} with exactly m = m(n) edges

and with genus at most g = g(n). We investigate the evolution of Sg(n,m) as m
increases, focussing on the number |H1| of vertices in the largest component. For

g � n, we show that |H1| exhibits two phase transitions, one at around m = n
2

and

a second one at around m = n. The exact behaviour of |H1| in the critical windows

of these phase transitions depends on the order of g = g(n).

1. Background and motivation

The theory of random graphs has a rich history, with many interesting models
and numerous exciting results. Among the most fascinating discoveries has been
the existence of thresholds at which dramatic changes occur in the fundamental
properties of the graph, such as the typical order of the largest component or the
probability of being connected.

Many of the features of the classical Erdős-Rényi random graph G(n,m), taken
uniformly at random from the set of all graphs on [n] := {1, 2, . . . , n} with exactly
m edges, are now known. Prominent among these results has been the study of
a phase transition in the ‘evolution’ of G(n,m) around m = n

2 , where the graph
typically changes in structure from being planar with relatively small components
of logarithmic order to being non-planar with a ‘giant’ component of linear order.

Various other interesting models of random graphs have also been investigated,
and a particular focus has been the study of random graphs on surfaces [1, 2,
4, 5, 6, 8, 9, 10, 11]. The most popular case here is the random planar graph
P (n,m), taken uniformly at random from the set of all planar graphs on [n] with
exactly m edges.

It is well known that G(n,m) is itself planar whp1 if m < n
2 − ω(n2/3), and so

P (n,m) thus behaves in the same way as G(n,m) for this range of m (see e.g. [7]).
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1With high probability, meaning with probability tending to 1 as n→∞.
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However, different properties have been found to emerge when m is beyond this
region [2, 5, 6, 8]. In particular, it was shown by Kang and  Luczak [8] that there
are, perhaps rather surprisingly, two critical periods for P (n,m). The first of these
occurs when the giant component is formed, which happens at m = n

2 + O(n2/3)
and thus coincides with when G(n,m) starts to become non-planar. The second
is then when the giant component covers nearly all vertices, which happens at
m = n+O(n3/5) and does not correspond to a phase transition in G(n,m).

An interesting and natural generalisation of P (n,m) is to consider random
graphs on other surfaces. Here, we define an orientable surface of genus g as a
sphere to which g handles have been attached, and the genus of a graph as the
smallest value of g for which the graph can be embedded on such a surface without
any crossing edges. We then define the graph Sg(n,m) as being taken uniformly
at random from the set of all graphs on [n] with exactly m edges and genus at
most g. Note that we thus have S0(n,m) = P (n,m).

In existing results on Sg(n,m), only the constant genus model has been studied,
and the actual value of g seems to have little impact. However, the genus can
certainly have substantial influence if it is instead allowed to grow as a function
of n, since it is clear that for sufficiently large g = g(n) (e.g. g =

(
n
2

)
), the graph

Sg(n,m) is identical to the standard Erdős-Rényi random graph G(n,m). Hence,
Sg(n,m) in fact generalises both P (n,m) and G(n,m), depending on the value of
g, and so the study of Sg(n,m) for general g appears to have the potential to be
the most interesting and exciting area of all.

2. Results

The main contribution of this work is to analyse the order of the largest component
of Sg(n,m) for general genus g = g(n), concentrating on the most interesting region

of m = m(n) from m = n
2 + ω

(
n2/3

)
(when G(n,m) starts to become non-planar

whp) to m = (1 + o(1))n (when the second critical period in P (n,m) occurs).
Note that Sg(n,m) will be indistinguishable from G(n,m) for this region of m

if g = ω(n), since G(n,m) can clearly only have genus at most m = Θ(n) (see
[3]). However, in the first of our main results, we rather excitingly discover that
for the weakly supercritical regime (i.e. when m = n

2 + s for positive s satisfying

n2/3 � s � n) there are in fact three possible cases: the largest component
of Sg(n,m) can behave as with P (n,m) (if g grows ‘slowly’); part-way between
P (n,m) and G(n,m) (if g grows at ‘intermediate’ speed); or as with G(n,m) (if g
grows ‘fast’).

To formalise these speeds of g, let us introduce the notion of contiguity.

Definition 1. We say that two random graph models A(n) and B(n) are
contiguous if, for all properties P(n), it is the case that A(n) has property P(n)
whp if and only if B(n) has property P(n) whp. We then say that T = T (n,m) is
a contiguity threshold for Sg(n,m) and G(n,m) if, for all fixed ε > 0, Sg(n,m) and
G(n,m) are contiguous for g ≥ (1 + ε)T and are not contiguous for g ≤ (1− ε)T .
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Our three speeds will correspond to the cases (i) g = o(T ) (slow), (ii) g = (c+
o(1))T for c ∈ (0, 1) (intermediate speed), and (iii) g ≥ (1− o(1))T (fast). Precise
results for T were derived in [3, Theorem 6.4]. In particular, when m = n

2 + s for

s > 0 satisfying n2/3 � s � n, then T = 8s3

3n2 , and when m ∼ λn for λ > 1
2 , then

T = µ(λ)m for a given function µ(λ).
Given a random variable a(n) and a positive-valued function b(n), we shall find

it convenient to adapt the standard deterministic asymptotic order notation into
whp order notation by always replacing ‘for all large n’ in the standard definitions
with ‘whp’. For example, a(n) = o(b(n)) whp or a(n) � b(n) whp means that,

given any constant ε > 0, we have |a(n)|b(n) < ε whp.

For brevity, we shall also henceforth use H1 = H1(Sg(n,m)) to denote the
largest component of Sg(n,m), and |H1| to denote its order (i.e. its number of
vertices). Then we are now ready to state our first main result.

Theorem 2. Let m = m(n) = n
2 + s ∈ N for s = s(n) > 0 satisfying n2/3 �

s � n, and recall that T = T (n,m) = 8s3

3n2 denotes the contiguity threshold for
Sg(n,m) and G(n,m). Furthermore, let g = g(n) and let H1 = H1(Sg(n,m)).
Then whp

(i) |H1| = (2 + o(1))s if g = o(T ),
(ii) |H1| = (f(c) + o(1))s if g = (c+ o(1))T for fixed c ∈ (0, 1),

and (iii) |H1| = (4 + o(1))s if g ≥ (1 + o(1))T,

where f : (0, 1) → (2, 4) is a fixed, concave, monotonically increasing, continuous
function satisfying f(c)→ 2 as c→ 0 and f(c)→ 4 as c→ 1.

Observe that the g = o(T ) region includes P (n,m), while the g ≥ (1 + o(1))T
region includes G(n,m). Furthermore, |H1| lies on a ‘sliding scale’ between these
two extremes if g grows at an intermediate speed.

Note in particular that if 1 � g � n, then all three types of behaviour will
occur as m = n

2 + s moves through the weakly supercritical regime. For example,

if g = n1/2, then |H1| behaves as in G(n,m) for s ≤ (1 + o(1))
(
3
8

)1/3
n5/6, then

part-way between G(n,m) and P (n,m) when s ∼ c2n5/6 for c2 >
(
3
8

)1/3
, and then

as in P (n,m) for s� n5/6.
Our next result concerns the region of m from m =

(
1
2 + ε

)
n for small ε > 0 up

to m = (1− ε)n. Recall that, for this region, Sg(n,m) and G(n,m) will certainly
be contiguous if g = ω(n), and will not be contiguous if g = o(n).

When m ∼ λn for λ > 1
2 , the order of the largest component of G(n,m) is

known to be whp (1 + o(1)) ρn, where ρ(λ) ∈ (0, 1) is uniquely determined by the
equation 1− ρ = e−2λρ (and hence ρ grows smoothly, converging to 1 as λ→∞,
see e.g. [7]). Note in particular that the number of vertices outside the largest
component is thus whp Θ(n) when m = Θ(n).

For P (n,m), by contrast, there exists a critical period at m = (1 + o(1))n,
where the number of vertices outside the giant component drops to o(n) whp.
This occurs because in the intermediate region, when m ∼ λn for λ ∈

(
1
2 , 1
)
, the
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order of the largest component of P (n,m) is whp (2λ− 1 + o(1))n. For g = o(n),
we find that |H1| behaves as in the planar model.

Theorem 3. Let m = m(n) ∈ N satisfy
(
1
2 + ε

)
n ≤ m ≤ (1 − ε)n for some

fixed ε > 0, let g = g(n) = o(n), and let H1 = H1(Sg(n,m)). Then whp

|H1| = (1 + o(1))(2m− n).

For this g = o(n) case, we then investigate in detail the critical period at
m = (1 + o(1))n (for technical reasons, our precise upper bound will be n +
O
(
(log n)−2/3n

)
). We focus on the order of the graph R = R(Sg(n,m)) :=

Sg(n,m)\H1 outside the largest component, discovering fascinating and surprising
behaviour.

In the planar g = 0 case, for m = n + t we have |R| = (2 + o(1))|t| when
t < 0 and n3/5 � |t| � n, then |R| = Θ

(
n3/5

)
when t = O

(
n3/5

)
, and finally

|R| =
((

n
t

)3/2)
when t > 0 and n3/5 � t � n (see [8]). For Sg(n,m), we obtain

an intriguing generalisation of this result.

Theorem 4. Let m = m(n) = n + t ∈ N for t = t(n) satisfying t = o(n) if
t < 0 and t = O

(
(log n)−2/3n

)
) if t > 0, let g = g(n) = o(n), let ḡ = ḡ(n) =

max
{
g, n3/5

}
, and let R = R(Sg(n,m)). Then whp

|R| =


(2 + o(1))|t| if t < 0 and |t| = ω(ḡ),

Θ(ḡ) if t = o(ḡ),

Θ
((

n
t

)3/2)
if t > 0 and t = ω(ḡ).

One particularly startling phenomenon to note is the sudden drop in the value of
|R| immediately after the t = o(ḡ) region when g = ω

(
n3/5

)
. For instance, if g =

n0.9, then we have |R| = Θ
(
n0.9

)
whp when t = n0.9−ε, but |R| = Θ

(
n0.15−

3ε
2

)
whp when t = n0.9+ε. The transition from order Θ

(
n0.9

)
to order Θ

(
n0.15

)
must

take place in the range t = cḡ, where c > 0. By contrast, the behaviour of |R|
seems to be smooth leading up to the t = o(ḡ) region.

Observe also that the phase transition shown in Theorem 4 is similar to the
planar case if g = O

(
n3/5

)
. However, in contrast to Theorems 2 and 3, there are

differences to the planar case as soon as g reaches ω
(
n3/5

)
, even though this is

still substantially below the T = Θ(n) contiguity threshold.

3. Techniques

Our methodology draws on many areas, and involves new advancements and de-
velopments. Several different tools are consequently used, including probabilistic,
enumerative, and analytic techniques.

One important approach is via the core-kernel decomposition. Here, a graph is
(a) split into complex and non-complex components, (b) each complex component
is decomposed into a 2-core and a forest, and then (c) the 2-core is decomposed
into its kernel and a subdivision of edges. By reversing these instructions (starting
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from an ‘appropriate’ kernel) and keeping track of the number of possible ways to
perform the various steps, information on the typical structure and properties of
the constructed graph can hence be obtained.

Note that the core-kernel approach involves expressing a set of graphs as a sum
of subclasses involving the relevant parts of the composition (such as the 2-core
and the kernel). We may then attempt to determine the main contribution to such
a sum by using a combinatorial variant of Laplace’s method from real analysis.

Another technique that we utilise is the (seemingly simple, but very useful) idea
of double-counting. For instance, suppose that we wish to relate the number of
graphs in two sets Gn and G′n. For each graph in Gn, we would aim to construct
many graphs in G′n by making various alterations (e.g. adding/deleting edges in
suitable places), and we would then try to show that each graph in G′n is not
constructed too many times.

The challenge when creating such a proof lies in finding a successful way to
construct many graphs of the desired type without introducing a large amount
of double-counting. Hence, the alterations used in the construction process need
to be carefully controlled, in order to allow some way of bounding the number of
possibilities for the original graph.

Finally, let us mention that one other useful way to gain knowledge of Sg(n,m)
is by applying recent results from [3] on the genus of the Erdős-Rényi random
graph G(n,m). Note that if G(n,m) is known to have genus at most g(n) whp,
for some specified values of g(n) and m(n), then this immediately implies that for
these values the random graphs G(n,m) and Sg(n,m) must be contiguous.
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