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AUTOMORPHISM GROUPS OF EDGE-TRANSITIVE MAPS

G. A. JONES

Abstract. For each of the 14 classes of edge-transitive maps described by Graver
and Watkins, necessary and sufficient conditions are given for a group to be the
automorphism group of a map, or of an orientable map without boundary, in that
class. Extending earlier results of Širáň, Tucker and Watkins, these are used to
determine which symmetric groups Sn can arise in this way for each class. Similar
results are obtained for all finite simple groups, building on work of Leemans and
Liebeck, Nuzhin and others on generating sets for such groups. It is also shown that
each edge-transitive class realises finite groups of every sufficiently large nilpotence
class or derived length, and also realises uncountably many non-isomorphic infinite
groups.

1. Introduction

Maps are embeddings of graphs in surfaces, with simply-connected faces; those
with a high degree of symmetry are of particular interest. In 1997 Graver and
Watkins [3] partitioned edge-transitive maps M into 14 classes, distinguished by
the isomorphism class of the quotient map M/AutM; in that year, Wilson [22]
gave a similar classification.

These classes T correspond bijectively to the 14 isomorphism classes of maps
N (T ) with one edge. These are shown in Figure 1, where all maps are on the closed
disc, except 2P ex, 5 and 5∗ on the sphere, 4P on the Möbius band, and 5P on the
real projective plane. They include the class 1 of regular maps (for which AutM is
transitive on flags), the class 2P ex of chiral maps (the non-regular orientable maps
for which the orientation-preserving subgroup Aut+M is transitive on arcs), and
the class 3 of just-edge-transitive maps (for which AutM is transitive on edges
but not vertices or faces). The duals of the maps in class 2 form class 2∗, while
the Petrie duals of the latter form class 2P ; the same applies to classes 2 ex, 4 and
5, while classes 1 and 3 are invariant under these two operations.

This note describes the automorphism groups of maps in these 14 classes, con-
tinuing work begun by Širáň, Tucker and Watkins in [18]. Because of space con-
straints, results can only be stated here. The method used to prove them is briefly
outlined in the final section; for full details, see [7].

Received May 27, 2019.
2010 Mathematics Subject Classification. Primary 05C10; Secondary 20B25.



842 G. A. JONES

1

2 2∗ 2P

2 ex 2∗ex 2P ex

3

4 4∗ 4P

5 5∗ 5P

Figure 1. The basic maps N (T ) for the 14 edge-transitive classes T .

2. Finite edge-transitive maps and groups

Širáň, Tucker and Watkins [18] showed that for each integer n ≥ 11 with n ≡ 3
or 11 mod (12), there are finite, orientable, edge-transitive mapsM in each of the
14 edge-transitive classes T , with AutM isomorphic to the symmetric group Sn.
This is generalised as follows, where G(T ) denotes the set of groups G ∼= AutM
for some map M in class T :

Theorem 2.1. A symmetric group Sn, an alternating group An, or a projective
special linear group L2(q) = PSL2(q) is in G(T ) if and only if it satisfies the
corresponding condition in Table 1.
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Table 1. Groups Sn, An and L2(q) in sets G(T ).

Class T Sn An L2(q)

1 n ≥ 1 n = 1, 2, 5 or n ≥ 9 q 6= 3, 7, 9
2, 2∗, 2P n ≥ 2 n ≥ 5 q 6= 3
2 ex, 2∗ex, 2P ex n ≥ 6 n ≥ 8 no q
3 n ≥ 2 n ≥ 5 q 6= 3
4, 4∗, 4P n ≥ 2 n ≥ 4 every q
5, 5∗, 5P n ≥ 6 n ≥ 7 no q

In the case T = 1, Sjerve and Cherkassoff [19] dealt with these groups together
with PGL2(q), while Nuzhin [12, 13, 14, 15] dealt with An and the simple groups
of Lie type, including L2(q). In most cases, all but finitely many of these groups
are realised in each class T , the exceptions being six classes where no groups L2(q)
arise. The proof, here and for other results stated below, follows [18] in using
necessary and sufficient conditions for a group to be in the various sets G(T ):
for instance, when T = 1 these require the group to have generators ri (i =
0, 1, 2) satisfying r2

i = (r0r2)2 = 1. (See §5 for the other classes.) It is then a
routine (though often lengthy) matter to apply these conditions to the groups in
Theorem 2.1.

The groups An (n ≥ 5) and L2(q) (q ≥ 4) are all simple. More generally, it is
of interest to determine, for each class T , which non-abelian finite simple groups
are in G(T ). Here we use ATLAS notation [2] for simple groups:

Theorem 2.2. A non-abelian finite simple group is in G(T ) if and only if it is
not one of the exceptions listed in the corresponding row of Table 2.

Table 2. Non-abelian finite simple groups not in sets G(T ).

Class T Non-abelian finite simple groups G 6∈ G(T )

1 L3(q), U3(q), L4(2e), U4(2e), U4(3), U5(2),
A6, A7,M11,M22,M23,McL

2, 2∗, 2P U3(3)
2 ex, 2∗ex, 2P ex L2(q), L3(q), U3(q), A7

3 –
4, 4∗, 4P –
5, 5∗, 5P L2(q)

Corollary 2.3. Every non-abelian finite simple group is isomorphic to the au-
tomorphism group of an edge-transitive map.

The entry for T = 1 is due to Nuzhin [12, 13, 14, 15] and others, through their
answer to Mazurov’s Kourovka Notebook question [1, Problem 7.30] asking which
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non-abelian finite simple groups can be generated by three involutions, two of
them commuting; the unitary groups U4(3) and U5(2) were recently added to the
published lists after a computer search by Mačaj [10] revealed their omission. The
solution for T = 2P ex has recently been determined by Leemans and Liebeck [9]
in the equivalent context of abstract polyhedra, and a simple duality argument
extends their result to 2 ex and 2∗ex. The entries for the remaining classes are
apparently new.

The exceptions for these ten classes are easily explained. The unitary group
U3(3) is not in G(T ) for the classes T = 2, 2∗ and 2P since groups realised in
such classes must be generated by at most three involutions, and Wagner [20] has
shown that this group requires four. A result of Singerman [17] shows that, for each
generating pair for L2(q), there is an automorphism inverting both generators; such
an automorphism is forbidden for the classes T = 5, 5∗ and 5P , so L2(q) 6∈ G(T ).
The exceptions for T = 2 ex and 2∗ex are the same as those found in [9] for
T = 2P ex.

Simple arguments show that if a group is realised in class 1 or 2P ex it is also
realised in various other classes, so to show that a group is in G(T ) one can
concentrate on those groups not in G(1) or G(2P ex) (for finite simple groups, these
are the exceptions in the first and third rows of Table 2). To realise such groups,
more direct arguments are required, finding specific generators and then showing
that these do not admit forbidden automorphisms.

Let G+(T ) be the set of groups G ∼= AutM for an orientable map without
boundary in class T . All maps in class T = 2P ex, 5 or 5∗ have these properties, so
G+(T ) = G(T ). For the other classes, each group in G+(T ) must have a subgroup
of index 2, so in particular no simple group (other than C2 for T = 1) is in G+(T ).
For example, by Theorem 2.1 no group L2(q) is in G+(T ) for any T . For Sn and
An we have:

Theorem 2.4. A group Sn or An is in G+(T ) if and only if it satisfies the
corresponding condition in Table 3.

Table 3. Groups Sn and An in sets G+(T ).

Class T Sn ∈ G+(T ) An ∈ G+(T )

1 n 6= 1, 5, 6 no n
2, 2∗ n 6= 1, 2, 5, 6 no n
2P n ≥ 3 no n
2 ex, 2∗ex n ≥ 7 no n
2P ex n ≥ 6 n ≥ 8
3 n ≥ 3 no n
4, 4∗, 4P n ≥ 3 no n
5, 5∗ n ≥ 6 n ≥ 7
5P n ≥ 6 no n
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Theorem 2.5. G(T ) contains a finite group of nilpotence class c or derived
length l if and only if c or l satisfy the corresponding condition in Table 4.

Table 4. Nilpotence class and derived length.

Class T Nilpotence class c Derived length l

2 ex, 2∗ex, 2P ex c ≥ 5 l ≥ 2
5, 5∗, 5P c ≥ 2 l ≥ 2
All other T c ≥ 1 l ≥ 1

There has been recent interest [6] in arc-transitive maps. These results can be
applied to them by restricting attention to the arc-transitive classes T = 1, 2∗, 2P ,
2∗ex and 2P ex. For instance, every non-abelian finite simple group except U3(3)
is the automorphism group of an arc-transitive map.

3. Infinite edge-transitive maps and groups

The proof of a classic result of Neumann [11] is adapted to prove:

Theorem 3.1. Each of the 14 edge-transitive classes T contains 2ℵ0 maps
M with empty boundary and with mutually non-isomorphic automorphism groups
AutM.

Similarly, an embedding theorem of Schupp [16] is used to prove:

Theorem 3.2. For each of the 14 edge-transitive classes T , every countable
group C is isomorphic to a subgroup of AutM for some map M in T .

Adapting Grigorchuk’s construction [4, 5] of groups with intermediate growth
(faster than any polynomial, slower than any exponential function), we have:

Theorem 3.3. Each of the 14 edge-transitive classes T contains 2ℵ0 maps M
such that M and AutM have intermediate growth.

4. Maps with non-empty boundary

Let us define a class T to be void or tame if it contains no maps with non-empty
boundary, or if it contains such maps and they all have dihedral automorphism
groups; otherwise it is wild.

Theorem 4.1. Of the 14 classes of edge-transitive maps,

• six, namely 2 ex, 2∗ex, 2P ex, 5, 5∗ and 5P , are void,
• four, namely 1, 2, 2∗ and 2P , are tame, and
• four, namely 3, 4, 4∗ and 4P , are wild.

For each tame class, one can classify its maps with non-empty boundary (see [7]);
most are on the closed disc, with a few on the annulus, Möbius band or doubly
infinite strip. For the wild classes, while it is possible to give general descriptions,
such a classification is about as difficult as that of classifying all regular maps, and
thus impossible with current techniques.
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5. Outline of the method

As shown in [7, 8], maps M can be identified with permutation representations
Γ→ Sym Φ of the group

Γ = 〈Ri (i = 0, 1, 2) | R2
i = (R0R2)2 = 1〉,

where each Ri acts on the set Φ of flags (incident vertex-edge-face triples) of M
by changing the i-dimensional component of each flag (whenever possible) while
preserving the other two. Fixed points of Ri correspond to flags on the boundary.
Now M is connected (as we always assume) if and only if Γ is transitive on Φ,
in which case M corresponds to a conjugacy class of map subgroups M of Γ, the
stabilisers of flags. Then AutM ∼= NΓ(M)/M where NΓ(M) is the normaliser of
M in Γ, andM is edge-transitive if and only if Γ = NΓ(M)E where E is the Klein
four-group 〈R0, R2〉 ≤ Γ. The 14 edge-transitive classes T thus correspond to the
14 conjugacy classes of subgroups N = N(T ) ≤ Γ such that Γ = NE, so that M
is in T if and only if NΓ(M) = N(T ); thenM is a regular covering, by AutM, of
the basic map N (T ) corresponding to the map subgroup N(T ) of Γ (see Figure 1).
For instance N(1) = Γ, and N (1) is the trivial map with one flag.

Table 5. Groups N(T ) and forbidden automorphisms.

Class T N(T ) forbidden automorphisms
1 (C2 × C2) ∗ C2 none
2 C2 ∗ C2 ∗ C2 s1 and s2 transposed, s3 fixed

2 ex C2 ∗ C∞ s1 fixed, s2 inverted
3 C2 ∗ C2 ∗ C2 ∗ C2 double transpositions of generators si
4 C2 ∗ C2 ∗ C∞ s1 and s2 transposed, s3 inverted
5 C∞ ∗ C∞ s1 and s2 inverted, transposed or both

The subgroups N(T ), having finite index in the finitely presented group Γ,
all have finite presentations, which are easily found. The automorphism groups
A = AutM for maps M in T are all obtained as quotients N(T )/M of N(T )
by normal subgroups M of N(T ). However, there is an additional constraint:
this construction gives NΓ(M) ≥ N(T ), but we require equality here, which is
equivalent (when T 6= 1) to A not admitting certain ‘forbidden automorphisms’
induced by larger subgroups of Γ than N(T ) which might normalise M . A group
A is thus contained in G(T ) if and only if it has generators satisfying relations
corresponding to the defining relations of N(T ), so that it is a quotient of N(T ),
and also admits none of the forbidden automorphisms associated with the class
T . In this way one can determine which groups A are in G(T ) for each class
T . This task is eased by the fact that the 14 conjugacy classes of subgroups
N(T ) form just six orbits under the action of the outer automorphism group
Out Γ ∼= S3 (corresponding to Wilson’s group S3 of map operations generated by
duality and Petrie duality [8, 21], giving the six rows in Figure 1), so that it is
sufficient to consider just one representative from each orbit. These are shown
in Table 5, where the groups N(T ) are decomposed as free products, and the
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forbidden automorphisms for T 6= 1 are specified by their effect on the images
si ∈ A of generators of successive cyclic free factors of N(T ). See [7] for full
details.
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