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TILING EDGE-COLOURED GRAPHS WITH FEW

MONOCHROMATIC BOUNDED-DEGREE GRAPHS

J. CORSTEN and W. MENDONÇA

Abstract. We prove that for all integers ∆, r ≥ 2, there is a constant C =

C(∆, r) > 0 such that the following is true for every sequence F = {F1, F2, . . .}
of graphs with v(Fn) = n and ∆(Fn) ≤ ∆ for every n ∈ N. In every r-edge-

coloured Kn, there is a collection of at most C monochromatic copies from F whose

vertex-sets partition V (Kn). This makes progress on a conjecture of Grinshpun and
Sárközy.

1. Introduction and main results

A conjecture of Lehel states that the vertices of any 2-edge-coloured complete
graph can be partitioned into two monochromatic cycles of different colours. Here,
single vertices and edges are considered cycles. This conjecture first appeared
in [2], where it was also proved for some special types of colourings of Kn.  Luczak,
Rödl and Szemerédi [12] proved Lehel’s conjecture for all sufficiently large n using
the regularity method. In [1], Allen gave an alternative proof, which gave a better
bound on n. Finally, Bessy and Thomassé [3] proved Lehel’s conjecture for all
integers n ≥ 1.

Moving on to more colours, Erdős, Gyárfás and Pyber [6] proved the following
theorem.

Theorem 1 (Erdős–Gyárfás–Pyber, 1991). The vertices of every r-edge-
coloured complete graph on n vertices can be partitioned into O(r2 log r) monochro-
matic cycles.

It was further conjectured in [6] that r cycles should always suffice in The-
orem 1. The currently best-known upper bound is due to Gyárfás, Ruszinkó,
Sárközy and Szemerédi [9], who showed that O(r log r) cycles suffice. The conjec-
ture was refuted however by Pokrovskiy [13], who showed that, for every r ≥ 3,
there exist infinitely many r-coloured complete graphs which cannot be vertex-
partitioned into r monochromatic cycles. Pokrovskiy conjectured though that in
every r-coloured complete graph one can find r vertex-disjoint monochromatic cy-
cles which cover all but at most cr vertices for some cr ≥ 1 only depending on r
(in his counterexample cr = 1 is possible).
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In this paper, we study similar problems in which we are given a family of
graphs F and an edge-coloured complete graph Kn and our goal is to partition
V (Kn) into monochromatic copies of graphs from F . All families of graphs F we
consider here are of the form F = {F1, F2, . . .}, where Fi is a graph on i vertices
for every i ∈ N (note that the family of cycles is of this form since we consider
vertices and edges to be cycles). We call such a family a sequence of graphs. An
F-tiling T of a graph G is a collection of vertex-disjoint copies of graphs from F
in G with V (G) =

⋃
T∈T V (T ). If G is coloured, we say that T is monochromatic

if every T ∈ T is monochromatic (but not necessarily in the same colour). Let
τr(F , n) be the minimum t ∈ N such that for every r-edge-coloured Kn, there is
a monochromatic F-tiling of size at most t. We call τr(F) = supn∈N τr(F , n) the
tiling number of F .

Using this notation, the above results of Pokrovskiy and of Gyárfás, Ruszinkó,
Sárközy and Szemerédi imply that r+1 ≤ τr(C) ≤ O(r log r), where C is the family
of cycles. Note that, in general, it is not clear at all that τr(F) is finite and it is
a natural question to ask for which families this is the case.

The study of such tiling problems for more general families of graphs was initi-
ated by Grinshpun and Sárközy [8] who proved the following result. The maximum
degree ∆(F) of a sequence of graphs F is given by maxF∈F ∆(F ), where ∆(F ) is
the maximum degree of F .

Theorem 2 (Grinshpun–Sárközy [8], 2016). Let F be a sequence of graphs of
maximum degree ∆. Then, we have

τ2(F) ≤ 2O(∆ log ∆).

In particular, τ2(F) is finite whenever ∆(F) is finite.

Grinshpun and Sárközy also proved that τ2(F) ≤ 2O(∆) for every sequence of
bipartite graphs F of maximum degree ∆ and showed that this is best possible
up to the implicit constant (using a result of Graham, Rödl and Ruciński [7]).
Sárközy [14] further proved that Theorem 2 can be improved a lot for the special
case of powers of cycles (the k-th power of a graph H is the graph obtained from
H by adding an edge between any two vertices of distance at most k).

For more than two colours less is known. Answering a question of Elekes,
Soukup, Soukup and Szentmiklóssy [5], Bustamante, Frankl, Pokrovskiy, Skokan
and the first author [4] proved that τr(C(k)) < ∞ for all r, k ∈ N, where C(k) is
the family of k-th powers of cycles. Grinshpun and Sárközy [8] conjectured that
the same should be true for all families of graphs of bounded degree (with a much
stronger bound).

Conjecture 1 (Grinshpun–Sárközy [8], 2016). For every r ∈ N, there is some
Cr ∈ N so that for every sequence F of graphs of maximum degree ∆, we have

τr(F) ≤ 2∆Cr
.

Note that it is still open to decide whether τr(F) is finite for such families. We
show that this is the case and make progress towards Conjecture 1.
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Theorem 3. For all integers r,∆ ≥ 2 and all families of graphs F of maximum

degree ∆, we have τr(F) ≤ rrO(∆5)

. In particular, τr(F) <∞ whenever ∆(F)<∞.

1.1. Graphs with linear Ramsey number

Given a sequence of graphs F , it follows from the pigeon-hole principle that every r-
edge-coloured Kn contains a monochromatic copy from F of size at least n/τr(F).
Finding the largest such copy is closely related to Ramsey numbers. The r-colour
Ramsey number Rr(G) of a graph G is the smallest integer N such that every
r-coloured KN contains a monochromatic copy of G. We say that F = {F1, F2, . . .}
has linear Ramsey number if Rr(Fn) = O(n). If F is increasing, i.e. Fi ⊂ Fi+1

for every i ∈ N, then F has linear Ramsey number if and only if there is some
c > 0 such that every r-edge-coloured Kn contains a monochromatic copy from F
of size at least cn (the only if part is always true). Hence, having linear Ramsey
number is a necessary condition for having finite tiling number in this case. We
make the following conjecture.

Conjecture 2. Every sequence of graphs F with linear r-colour Ramsey num-
ber has finite r-colour tiling number.

Conjecture 2 is probably very difficult. A recent breakthrough result of Lee [11]
asserts that graphs with bounded degeneracy have linear Ramsey number. It would
be of great interest to prove Conjecture 2 for these graphs.

Graphs with linear Ramsey number are well studied and we can use the results
from this area to obtain lower bounds on the tiling number: It was proved by
Graham, Rödl and Ruciński [7] that there exists a sequence of bipartite graphs
F = {F1, F2, . . .} with R2(Fn) ≥ 2Ω(∆)n. Grinshpun and Sárközy observed that
it is easy to make this sequence increasing, thereby showing that τ2(F) ≥ 2Ω(∆)

as well.

2. Proof overview

We will use the absorption method introduced by Erdős, Gyárfás and Pyber in [6].
This method has become a standard tool and has been applied to many problems
in the area. We will briefly sketch the proof of Theorem 1 in order to introduce
the method and then explain how we need to adapt it for our problem. For sake
of clarity, we will not make an effort to calculate the exact constants and use the
following standard O-notation. Given two functions f, g : N → N and a constant
C > 0, we say that f = OC(g) if there is a constant C ′ = C ′(C) > 0 so that
f(n) ≤ C ′ · g(n) for all but finitley many n ∈ N. We say that f = ΩC(g) if
g = OC(f). For example, Theorem 1 implies that τr(C) = Or(1).

Proof Sketch of Theorem 1. We start by defining absorbers for the family of
cycles, which will play a central role in the proof.

Definition 1. A pair (H,A) of a graph H and a set A ⊂ V (H) is called an
absorber if H[V (H) rX] contains a Hamilton cycle for every X ⊂ A.



564 J. CORSTEN and W. MENDONÇA

Fix r, n ∈ N and an r-edge-coloured Kn now. The first part of the proof is
finding a large monochromatic absorber.

Lemma 1. There is a monochromatic absorber (H,A) with |A| ≥ Ωr(n).

Then, we greedily cover most of the vertices by repeatedly taking out the largest
monochromatic cycle.

Lemma 2. There is a collection of Or(1) vertex-disjoint monochromatic cycles
in V (Kn)rV (H), covering all but ε(|A|) vertices, where ε > 0 is a small constant
depending on r.

The key part of the proof is to deal with the set R of leftover vertices. This is
done using the following Absorption Lemma.

Lemma 3 (Absorption Lemma for cycles). Let V1, V2 be sets with |V1| ≤ ε |V2|
and let G be an r-coloured complete bipartite graph with parts V1, V2. Then, there
is a collection of Or(1) vertex-disjoint monochromatic cycles in G covering V1.

In order to finish the proof, we apply the Absorption Lemma to the complete
bipartite graph induced by V1 = R and V2 = A and denote by X the set of vertices
in A which are covered in this process. Finally, using the property of the absorber
H, we find a monochromatic cycle whose vertex-set is V (H) rX. �

In order to prove Theorem 3, we will follow the basic strategy explained above.
We will use so called “super-regular pairs” as absorbers, combined with the blow-
up lemma [10] which guarantees a similar property as in Definition 1. The process
of adapting Lemma 1 and Lemma 2 to our problem is done in a similar way as
in [8] and therefore we will not discuss this here.

The main difficulty of the proof is the following absorption lemma. For simplic-
ity we will describe it only for families of bipartite graphs.

Lemma 4 (Absorption Lemma for graphs of bounded degree). Fix integers
∆, r ≥ 2 and a sequence of bipartite graphs F with ∆(F) ≤ ∆. Let V1, V2 be
disjoint sets with |V1| ≤ |V2| and let G be the graph obtained from K(V1, V2)
(the complete bipartite graph with parts V1 and V2) by replacing V1 with a clique.
Suppose that G is edge-coloured with r colours. Then, there is a collection of
O∆,r(1) vertex-disjoint monochromatic copies from F in G which cover V1.

The proof of Lemma 4 proceeds by induction on r. In order to apply the
induction hypothesis, we will prove a stronger statement which does not require
the host graph to be complete but instead that deg(v, V2) ≥ δ|V2| for all v ∈ V1.
The basic steps of the proof can be summarised as follows.

(i) Find a monochromatic, say red, absorber with vertices U1∪U2, where Ui ⊂ Vi
for i = 1, 2.

(ii) Greedily cover most of V1 rU1 and let R ⊂ V1 be the set of leftover vertices.
(iii) Partition R = R1 ∪R2 ∪R3 in such a way that the vertices in R1 have many

red neighbours in U2, the vertices in R2 have many non-red neighbours in U2,
and the vertices in R3 don’t have many neighbours in U2. The vertices in R1
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can then be included in the absorber and the vertices in R2 can be dealt with
by induction. Since, the vertices in R3 don’t have many neighbours in U2, we
will have deg(v, V2) ≥ (δ+δ′) |V2 r U2| for some small constant δ′ = δ′(∆, r).
We iterate this process now on the graph induced on R3 ∪ V2 r U2. Since
deg(v, V2) cannot be larger than |V2|, this process will end after O∆,r(1)
iterations.

Proving Theorem 3 for families of bipartite graphs using Lemma 4 is straight-
forward. However, for families of non-bipartite graphs, things get more compli-
cated. Clearly, we cannot hope for an absorption lemma like Lemma 3 as the
host graph is bipartite and thus all its subgraphs are. Instead, we will work in a
multi-partite graph. We then prove a variation of Lemma 4 in which G has ∆ + 1
parts and we require that every vertex in V1 is in many monochromatic cliques
with one vertex in each part. However, when applying this absorption lemma, we
can’t guarantee that this property holds (consider, for example, a three-partite
graph in which the edges between V1 and V2 are blue and all other edges are red).
We will overcome this problem by iteratively applying the absorption lemma and
prove that, after O∆,r(1) iterations, all vertices are covered. This idea was recently
introduced in [4].
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