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THE STRUCTURE OF HYPERGRAPHS

WITHOUT LONG BERGE CYCLES

E. GYŐRI, N. LEMONS, N. SALIA and O. ZAMORA

Abstract. We study the structure of r-uniform hypergraphs containing no Berge
cycles of length at least k for k ≤ r, and determine that such hypergraphs have

some special substructure. In particular we determine the extremal number of such

hypergraphs, giving an affirmative answer to the conjectured value when k = r and
giving a a simple solution to a recent result of Kostochka-Luo when k < r.

1. Introduction

In 1959 Erdős and Gallai proved the following results on the Turán number of
paths and families of long cycles.

Theorem 1 (Erdős, Gallai [2]). Let n ≥ k ≥ 1. If G is an n-vertex graph that

does not contain a path of length k, then e(G) ≤ (k−1)n
2 .

Theorem 2 (Erdős, Gallai [2]). Let n ≥ k ≥ 3. If G is an n-vertex graph that

does not contain a cycle of length at least k, then e(G) ≤ (k−1)(n−1)
2 .

In fact, Theorem 1 was deduced as a simple corollary of Theorem 2. Recently
numerous mathematicians started investigating similar problems for r-uniform hy-
pergraphs. We will refer to r-uniform hypergraphs as an r-graphs for simplicity.
All r-graphs are simple (i.e. contain no multiple edges), unless stated otherwise.

Definition 3. A Berge cycle of length t in a hypergraph, is an alternating
sequence of distinct vertices and hyperedges, v0, e1, v1, e2, v2, . . . , vt−1, et, v0 such
that, vi−1, vi ∈ ei, for i = 1, 2, . . . t, (where indices taken modulo t).

Definition 4. A Berge path of length t in a hypergraph, is an alternating
sequence of distinct vertices and hyperedges, v0, e1, v1, e2, v2, . . . , et, vt such that,
vi−1, vi ∈ ei, for i = 1, 2, . . . t.
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The first extension of Erdős and Gallai [2] result, was by Győri, Katona, and
Lemons [6], who extended Theorem 1 for r-graphs. It turns out that the extremal
numbers have a different behavior when k ≤ r and k > r

Theorem 5 (Győri, Katona and Lemons [6]). Let r ≥ k ≥ 3, and let H be an

n-vertex r-graph with no Berge path of length k. Then e(H) ≤ (k−1)n
r+1 .

Theorem 6 (Győri, Katona and Lemons [6]). Let k > r + 1 > 3, and let H be

an n-vertex r-graph with no Berge-path of length k. Then e(H) ≤ n
k

(
k
r

)
.

The remaining case when k = r + 1 was solved later by Davoodi, Győri,
Methuku, and Tompkins [1], the extremal number matches the upper bound of
Theorem 6.

Similarly the extremal hypergraphs when Berge cycles of length at least k are
forbidden, are different in the cases when k ≥ r+2 and k ≤ r+1 with an exceptional
third case when k = r. The latter has a surprisingly different extremal hypergraph.
Fűredi, Kostochka and Luo [4] provide sharp bounds and extremal constructions
for infinitely many n, for k ≥ r + 3 ≥ 6. Later they [5] also determined exact
bounds and extremal constructions for all n, for the case k ≥ r + 4. Kostochka
and Luo [10] determine a bound for k ≤ r − 1 which is sharp for infinitely many
n. Ergemlidze, Győry, Metukhu, Salia, Tompkins and Zamora [3] determine a
bound in the cases where k ∈ {r + 1, r + 2}. The case when k = r remained open.
Both papers [10, 3] conjectured the maximum number of edges to be bounded by

max
{

(n−1)(r−1)
r , n− (r − 1)

}
(See figure 14).

Theorem 7 (Füredi, Kostochka and Luo [4, 5]). Let r ≥ 3 and k ≥ r+ 3, and
suppose H is an n-vertex r-graph with no Berge cycle of length k or longer. Then
e(H) ≤ n−1

k−2

(
k−1
r

)
.

Theorem 8 (Ergemlidze et al. [3]). If k ≥ 4 and H is an n-vertex r-graph with
no Berge cycles of length at least k, then if k = r + 1 then e(H) ≤ n − 1, and if

k = r + 2 then e(H) ≤ (n−1)(r+1)
r .

Theorem 9 (Kostochka, Luo [10]). Let k ≥ 4, r ≥ k + 1 and let H be an n-
vertex r-uniform multi-hypergraph, each edge of H has multiplicity at most k − 2.

If H has no Berge-cycles of length at least k, then e(H) ≤ (k−1)(n−1)
r .

Kostochka and Luo obtain their result from the incidence bipartite graph by
investigating the structure of 2-connected bipartite graphs. In a similar way a
previous result of Jackson [9] gives an upper bound on the number of edges of a
multi r-graph with no Berge cycle of length at least r.

Theorem 10 (Jackson [9]). Let G be a bipartite graph with bi-partition A and B

such that |A| = n and every vertex in B has degree at least r, if |B| >
⌊
n−1
r−1

⌋
(r−1)

then G contains a cycle of length at least 2r.

In this paper we study the structure of r-graphs containing no Berge cycles of
length at least k, for all 3 ≤ k ≤ r. By exploring the structure of the hypergraphs,
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instead of bipartite graphs, we are able to find extremal number in the case when
k = r, which also gives us a simple proof for Theorem 9. Even more our method
lets us determine the extremal number for every value of n in both simple r-graphs
and multi r-graphs.

2. Notation and results

Figure 1. The extremal graphs from Theorems 12, 14 and 16. The figure on the left is a block
tree, each block contains same number of vertices, either r in the case of multi-hypergraphs or

r + 1 otherwise and k − 1 hyperedges. The figure on the right is S(r)n the n-vertex r-star, each

hyperedge share the same r − 1 vertices.

Given a hypergraph H, let V (H) and E(H) denote the set of vertices and
hyperedges of H, respectively, and let v(H) := |V (H)|, e(H) := |E(H)|. We
denote by 1rN∗(n), the characteristic function of rN∗, the function which is 1
when n is a positive multiple of r and 0 otherwise. A hypergraph is F-free if it
doesn’t contain a copy of any hypergraph from the family F as a sub-hypergraph.
In the following, we are particularly interested in the families BPk and BC≥k, the
family of Berge path of length k and the family of Berge cycles of length at least
k, respectively. The Turán number exr(n,F) and exmulti

r (n,F) are the maximum
number of hyperedges in a F-free hypergraph or multi-hypergraph respectively on
n vertices.

Let H be a hypergraph. Then its 2-shadow, denoted by ∂2H, is the collection
of pairs of vertices that lie in some hyperedge of H. The graph H is connected if
∂2(H) is a connected graph.

Let n, k, r be integers such that k ≤ r, for fix s ∈ {r, r + 1}. A r-graph H is
called a (s, k − 1)-block tree if ∂2(H) is connected and every 2-connected block of
∂2(H) consists of s vertices which induce k−1 hyperedges in H. A (s, k−1)-block
tree contains no Berge-cycle of length at least k, because each of its blocks contain
fewer than k hyperedges.

We define the r-star, S(r)n , as the n-vertex r-graph with vertex set V (S(r)n ) =

{v1, v2, . . . , vn} and edge set E(S(r)n ) = {{v1, v2, . . . , vr−1, vi} : r ≤ i ≤ n}, the set

{v1, v2, . . . , vr−1} is called the center of the star. Since S(r)n has just r− 1 vertices

of degree bigger than 1, then S(r)n contains no Berge cycle of length at least r.
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Definition 11. For a set S ⊆ V , the hyperedge neighborhood of S in a r-graph
H is the set

Nh(S) := {h ∈ E(H)|h ∩ S 6= ∅}
of hyperedges that are incident with at least one vertex of S.

Our Main results are:

Theorem 12. Let k, n and r be positive integers such that 4 ≤ k < r, then

exr(n,BC≥k) =

⌊
n− 1

r

⌋
(k − 1) + 1rN∗(n)

If r|(n− 1) the only extremal n-vertex r-graphs are the (r + 1, k − 1)-block trees.

We note that as a corollary of Theorem 12 we obtain a slightly stronger version
of Theorem 5

Corollary 13. Let k, n and r be positive integer with 4 ≤ k ≤ r, then

exr(n,BPk) =

⌊
n

r + 1

⌋
(k − 1) + 1(r+1)N∗(n + 1)

Theorem 14. Let r > 2 and n be positive integers, then

exr(n,BC≥r) = max

{⌊
n− 1

r

⌋
(r − 1), n− r + 1

}
When n− r + 1 > n−1

r (r− 1) the only extremal graph is S(r)n . When n−1
r (r− 1) >

n− r + 1 and r|(n− 1) the only extremal graphs are the (r + 1, k − 1)-block trees.

Remark 15. In particular when n ≥ r(r−2) + 2, we have that exr(n,BC≥r) =

n− r + 1 and S(r)n is the only extremal hypergraph.

Theorem 16. Let k, n and r be positive integers such that 2 ≤ k ≤ r. Then

exmulti
r (n,BC≥k) =

⌊
n− 1

r − 1

⌋
(k − 1)

If r − 1|(n − 1) the only extremal graphs with n vertices are the (r, k − 1)-block
trees.

As a corollary of Theorem 16 we obtain a version of Theorem 5 with multiple
hyperedges

Corollary 17. Let k, n and r be positive integer with 2 ≤ k ≤ r then

exmulti
r (n,BPk) =

⌊n
r

⌋
(k − 1).

In fact all these results have essentially the same proof since, these results follow
from our Lemma 18, which to some extent lets us understand the structure of long
Berge cycle free hypergraphs.

Lemma 18. Let r, n and m be positive integers, with n > r, and let H be an
n-vertex r-graph which is BC≥k-free such that every hyperedge has multiplicity at
most m. Then at least one of the following holds.
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i) There exists S ⊆ V of size r − 1 such that |Nh(S)| ≤ m. Moreover, if
m < k−1 there exists a set S of size r−1 such that Nh(S) is d ≤ m copies
of a hyperedge h and S ⊂ h.

ii) There exists S ⊆ V of size r such that |Nh(S)| ≤ k − 1.
iii) k = r, m < k − 1, and there exists e ∈ E(H) such that after removing e

from H the resulting r-graph can be decomposed in two r-graphs, S and K
sharing one vertex, such that S is a r-star with at least r − 1 edges, the
shared vertex is in the center of S, e ∩ V (S) is a subset of the center of S
and v(K) ≥ 2.

In particular, since no hyperedge can have multiplicity larger than k − 1, by
setting m = k − 1 we have that there exists a set S of size r − 1 incident with at
most k − 1 edges.

In the manuscript [7], we prove Theorems 12, 14 and 16 including Lemma 18,
as well as their corollaries.
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2. Erdős P. and Gallai T., On maximal paths and circuits of graphs, Acta Math. Hungar. 10

(1959), 337–356.
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4. Füredi Z., Kostochka A. and Luo R., Avoiding long Berge cycles, arXiv:1805.04195.

5. Füredi Z., Kostochka A. and Luo R., Avoiding long Berge cycles II, exact bounds for all n,
arXiv:1807.06119.
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