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ENUMERATION OF UNSENSED ORIENTABLE

AND NON-ORIENTABLE MAPS

E. KRASKO and A. OMELCHENKO

Abstract. The work is devoted to the problem of enumerating maps on an ori-

entable or non-orientable surface of a given genus g up to all symmetries (so called

unsensed maps). We obtain general formulas which reduce the problem of counting
such maps to the problem of enumerating rooted quotient maps on orbifolds. In

addition, we solve the problem of describing all cyclic orbifolds for a given orientable

or non-orientable surface of fixed genus g. We also derive recurrence relations for
quotient rooted maps on orbifolds that can be orientable or non-orientable sur-

faces with r branch points, h boundary components and g handles or cross-caps.

These results allowed us to calculate the numbers of unsensed maps on orientable
or non-orientable surfaces of arbitrary genus g by the number of edges.

By a topological map M on a surface X we will mean a 2-cell imbedding of a
connected graph G, loops and multiple edges allowed, into a compact connected
2-dimensional manifold X without boundary, such that the connected components
of X−G are 2-cells. The 0-, 1-, and 2-dimensional cells of a map M are its vertices,
edges, and faces, respectively [11]. In this paper we consider both orientable and
non-orientable surfaces without boundary. Every such surface can be characterized
by its genus g. The orientable surface X of genus g is a sphere with g handles.
The non-orientable surface of genus g is a sphere with g holes glued with crosscaps
(or Möbius bands). Sometimes instead of g we will use the Euler characteristic χ
of the surface X, equal to 2− 2g in the case of an orientable surface X+ and 2− g
in the case of a non-orientable surface X−.

Two topological maps M1 and M2 on a surface X are said to be isomorphic
if there is a homeomorphism h of X that induces an isomorphism of the un-
derlying graphs G1 and G2. Map isomorphism splits the set of all maps on X
into equivalence classes, and each such class is called an unlabelled map. For
orientable surfaces we have two types of homeomorphisms, orientation-preserving
and orientation-reversing. Unlabelled maps on an orientable surface X+ up to
only orientation-preserving homeomorphisms are called sensed maps. Unlabelled
maps on an orientable or a non-orientable surface up to all homeomorphisms are
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called unsensed maps. The main aim of our work is to enumerate unsensed maps
on both orientable and non-orientable surfaces.

A general technique for counting sensed planar maps on the sphere was de-
veloped by Liskovets [19] in the early eighties. His approach reduces the enu-
merating problem for sensed maps on the sphere to counting quotient maps on
orbifolds, maps on quotients of a surface under a finite group of automorphisms.
Mednykh and Nedela [21] significantly developed Liskovets’ approach, obtaining
general formulas for counting sensed maps on an arbitrary orientable surface of a
given genus g. The most important result of that paper was an explicit analytical
formula for integer coefficients, that have the meaning of the numbers of epimor-
phisms from fundamental groups π1(O) of orbifolds to cyclic groups Zd. It was
proved that having these coefficients one can reduce the combinatorial problem of
enumerating sensed maps on a surface of a given genus g to the enumeration of
rooted quotient maps on orbifolds. The latter problem can be solved, for example,
via the recursive approach developed by Tutte [23]. As a result appeared a whole
series of papers devoted to enumerating various kinds of sensed maps. In partic-
ular, regular sensed maps on the torus [17] were enumerated, as well as regular
sensed maps on orientable surfaces of a given genus g [16], sensed hypermaps [22],
one-face regular sensed maps [15] and so on.

The current progress in enumeration of unsensed maps is not as good as for
sensed maps. There exist only a few results [3], [20], [18], [14] devoted to enu-
meration of unsensed maps on orientable surfaces, and all of them significantly use
some specifics of the enumerated objects. For instance, enumeration regardless of
genus [3] does not require listing orbifolds for each genus individually. For small
genera surfaces, such as the sphere [20] and the torus [18], the corresponding orb-
ifolds are quite simple and can be explicitly described. The corresponding problem
for unsensed maps on non-orientable surfaces seem to have never been considered
at all.

In the first part of our work we present two general formulas that allow to
compute the number of maps up to all symmetries on surfaces of a given genus g.
For orientable surfaces we have
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for non-orientable we have
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These formulas express the number of unsensed maps on any such surface as a
linear combination of numbers of quotient maps on cyclic orbifolds with integer
coefficients. Moreover, similarly to the results obtained in [21], we express these
coefficients through the numbers of epimorphisms from fundamental groups π1(O)
of orbifolds to cyclic groups Zd and obtain exact analytical formulas for them.
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It is worth noting that with these formulas we also solve a problem important
for algebraic topology: describing all cyclic coverings with the covering surface
being a given orientable or non-orientable surface of genus g. Previously, this
description was available only for coverings that arise from orientation-preserving
homeomorphisms, in [21]. The list of new orbifolds obtained by us can be found for
small values of g in Table 1. For arbitrary g we implemented a program available
in open access. It allows anyone to obtain the corresponding list of orbifolds for a
given orientable or non-orientable surface.

Using the results obtained in the first part of our paper we reduce the problem
of enumerating unsensed maps to the problem of enumerating quotient maps on
orbifolds of a certain form. It is worth noting that this result makes it possible not
only to solve the problem of enumerating all unsensed maps on surfaces of a given
genus g, but also enumerate other objects of a similar kind, such as hypermaps,
d-regular maps, one-face maps, etc.

The second part of the present work is devoted to the construction of recurrence
relations for counting rooted quotient maps on orbifolds, the list of which was ob-
tained in the first part. To derive these relations, a standard technique known
as recursive approach [23] is used. It turns out, however, that the structure of
quotient maps on cyclic orbifolds in the general case is more complex than for
small genus surfaces. For instance, to enumerate quotient maps on the disc, one
of the quotients of a sphere, one can reduce this problem to enumerating quad-
rangulations [20] due to the fact that every planar quadrangulation is bipartite,
which is not true for higher genera surfaces. Orbifolds that arise from orientation-
reversing homeomorphisms of the torus have no branch points [18], which also
means that they are easier to enumerate. In the general case of unsensed maps of
a given genus, we have to consider orbifolds that can be surfaces with r branch
points, h boundary components and g handles or cross-caps. Recurrence relations
for the numbers of quotient maps on such orbifolds depend on a large number
of additional parameters, which significantly complicates the construction of such
recurrence relations. Despite that, we were able to construct recurrence relations
for an arbitrary orientable or non-orientable orbifold of the form described above.
For some simple cases (the disk, the Möbius band) we provide and prove them
explicitly. Explicitly writing out such recurrence relations for more complex orb-
ifolds does not present a separate interest, would only be technically complex and
result in cumbersome expressions. Instead, we decided to describe in detail the
main steps in constructing these recurrence relations, and implement an algorithm
realizing the corresponding computations. Our program written in Go is available
online for orientable and for non-orientable orbifolds. It can enumerate quotient
maps on the above-described orbifolds and obtain the final results for unsensed
maps.

The recurrence relations constructed in the second part of the paper together
with the formulas obtained in the first part completely solve the problem of enu-
merating all unsensed maps on orientable and non-orientable surfaces. In the
presented work we provide the numbers of such maps enumerated by the number
of edges on orientable surfaces of genus up to 10 and on non-orientable surfaces
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Table 1. Orbifolds covered by Euler characteristic X surfaces. For X ≥ 0 only the first few

rows are listed. For even X all Epio(π1(O), Zl) epimorphisms are split into those corresponding

to coverings by all and only by orientable surfaces of Euler characteristic X.

X l ± χ h mi Epio(π1(O), Zl) X l ± χ h mi Epio(π1(O), Zl) Epi
+
o (...)

1 1 − 1 0 [] 1 0 1 − 0 0 [] 1 0
1 2 + 1 1 [2] 1 0 2 + 1 1 [2 2] 1 0

1 3 − 1 0 [3] 2 0 2 − 1 0 [2 2] 2 0

1 4 + 1 1 [4] 2 0 2 + 0 2 [] 2 1
1 5 − 1 0 [5] 4 0 2 − 0 0 [] 3 1

1 6 + 1 1 [6] 2 0 2 − 0 1 [] 2 1

1 7 − 1 0 [7] 6 0 3 − 0 0 [] 2 0
1 8 + 1 1 [8] 4 0 4 + 0 2 [] 2 0

1 9 − 1 0 [9] 6 0 4 − 0 0 [] 4 4

1 10 + 1 1 [10] 4 0 4 − 0 1 [] 2 0
1 11 − 1 0 [11] 10 0 5 − 0 0 [] 4 0

1 12 + 1 1 [12] 4 0 6 + 0 2 [] 4 2

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

−1 1 − −1 0 [] 1 −2 1 − −2 0 [] 1 0
−1 2 + 1 1 [2 2 2] 1 −2 2 + 1 1 [2 2 2 2] 1 0

−1 2 + 0 2 [2] 2 −2 2 − 1 0 [2 2 2 2] 2 0

−1 2 − 0 1 [2] 2 −2 2 + 0 2 [2 2] 2 0
−1 3 − 1 0 [3 3] 4 −2 2 − 0 0 [2 2] 4 0

−1 4 + 1 1 [2 4] 2 −2 2 − 0 1 [2 2] 2 0

−1 6 + 1 1 [2 3] 2 −2 2 + −1 1 [] 4 1
−2 2 + −1 3 [] 4 1
−2 2 − −1 0 [] 7 1
−2 2 − −1 1 [] 4 1

−2 2 − −1 2 [] 4 1
−2 3 − 0 0 [3] 6 0
−2 4 − 1 0 [2 2 2] 2 2

−2 4 + 1 1 [4 4] 4 0
−2 4 − 1 0 [4 4] 8 0
−2 4 + 0 2 [2] 2 0

−2 4 − 0 0 [2] 8 0

−2 4 − 0 1 [2] 2 0
−2 6 + 1 1 [2 6] 2 0

−2 6 − 1 0 [2 6] 4 0
−2 6 + 1 1 [3 3] 4 4

−2 6 − 1 0 [3 3] 4 4

−2 8 − 1 0 [2 4] 4 4
−2 12 − 1 0 [2 3] 4 4

of genus up to 13. The analytical results obtained in this paper coincide with nu-
merical results obtained by generating all maps on surfaces of the corresponding
types.
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