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ON A FRANKL-WILSON THEOREM

AND ITS GEOMETRIC COROLLARIES

A. A. SAGDEEV and A. M. RAIGORODSKII

Abstract. We find a new analogue of the Frankl-Wilson theorem on the indepen-
dence number of distance graphs of some special type. We apply this new result to

two combinatorial geometry problems.
First, we improve a previously known value c such that χ (Rn;S2) ≥ (c+ o(1))n,

where χ (Rn;S2) is the minimum number of colors needed to color all points of Rn

so that there is no monochromatic set of vertices of a unit equilateral triangle S2.
Second, given m ≥ 3 we improve the value ξm such that for any n ∈ N there is

a distance graph in Rn with the girth greater than m and the chromatic number at

least (ξm + o(1))n.

1. Main theorem

Given natural numbers n ≥ k ≥ t let us define a distance graph G(n, k, t) =
(V (n, k), E(n, k, t)) as follows.

V (n, k) =

{
v = (v1, . . . , vn) ∈ Rn : ∀ i vi ∈ {0, 1} and

n∑
i=1

vi = k

}
,

E(n, k, t) =

{
{v, w} : v, w ∈ V (n, k) and

n∑
i=1

viwi = t

}
.

One can easily see that

|V (n, k)| =
(
n

k

)
, |E(n, k, t)| = 1

2

(
n

k

)(
k

t

)(
n− k
k − t

)
.

Graphs G(n, k, t) are among of the most important graphs for modern extremal
combinatorics for many reasons. Firstly, they are used in coding theory (see [18]).
Secondly, these graphs provide asymptotically the best counterexamples to Bor-
suk’s conjecture (see [19]). And last but not least, graphs G(n, k, t) are applicable
for Nelson’s problem and related problems on chromatic numbers of spaces (see
[8, 9, 30, 31, 32] and §2 of this paper).
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One of the most important cases for applications is the case k = k(n) ∼ κn,
t = t(n) ∼ τn as n→∞, where 0 < τ < κ ≤ 1

2 are fixed parameters.
One can use Stirling’s formula to see that(

an+ o(n)

bn+ o(n)

)
=
(
cba + o(1)

)n
as n→∞, where cba =

aa

bb(a− b)(a−b)
.

Hence, in our special case one has

|V (n, k)| = (cκ1 + o(1))
n
, |E(n, k, t)| =

(
cκ1c

τ
κc
κ−τ
1−κ + o(1)

)n
.

We combine the results that estimate the independence number of G(n, k, t) in
our case into the following theorem.

Theorem 1. Let k = k(n) ∼ κn, t = t(n) ∼ τn as n → ∞, where 0 < τ <
κ ≤ 1

2 are fixed. Let the value k − t be a prime number for every n. Then

α (G(n, k, t)) ≤


(
cκ−τ1 + o(1)

)n
if 2τ ≤ κ,(

cκ1c
κ−τ
1

c2κ−2τ1

+ o(1)

)n
if 2τ > κ.

The first item of Theorem 1 is due to Frankl and Wilson (see [5]). It was proven
in [2], [3] that this bound is best possible. The second item is due to [14] and
[20]. It is not known whether this bound can be further improved or not.

It follows from Theorem 1 that any sufficiently large subset W ⊂ V (n, k) con-
tains at least one edge inside. Our new Theorem 2 improves this result and states
that one can find almost all edges inside any sufficiently large subset W ⊂ V (n, k).

Theorem 2. Let k = k(n) ∼ κn, t = t(n) ∼ τn as n → ∞, where 0 < τ <
κ ≤ 1

2 are fixed. Let the value k − t be a prime number for every n. Then there is
a function δ = δ(ε, κ, τ) > 0 such that two following statements are valid. First,
given ε > 0 any subset W ⊂ V (n, k) such that |W | ≥ (1− δ)n |V (n, k)| contains
at least (1− ε)n |E(n, k, t)| edges inside for every sufficiently large n. Second,

δ(ε, κ, τ) =
1 + o(1)

4 (κ− τ)

ε2

ln2 ε

as ε→ 0.

We believe that our main Theorem 2 is of independent interest. Besides, in §2 we
give two examples of applying this theorem to combinatorial geometry problems.

The first non explicit result similar to Theorem 2 was obtained by Frankl and
Rödl in [6]. Similar, but much weaker explicit results were obtained in [6, 23, 24,
33]. Also see related works in [1, 10, 16, 15, 21, 25, 27, 28].

2. Geometrical applications

In 1950 Nelson asked what is the minimum number of colors χ
(
R2
)

needed to

color all points of R2 so that no two points at distance one receive the same color.
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Despite the fact that this problem does not look very hard the answer is still
unknown. Nowadays we only know (see [7]) that

5 ≤ χ
(
R2
)
≤ 7.

A lot of generalizations of this original problem have been considered over the
last seventy years. One of them is as follows. Let S ⊂ Rd be a finite set. Define
the chromatic number χ (Rn;S) as the minimum number of colors needed to color
all points of Rn (n ≥ d) so that no congruent copy of S in Rn is monochromatic.
The set S is called exponentially Ramsey if there is a constant c = c(S) > 1 such
that χ (Rn;S) > (c+ o(1))

n
as n → ∞. A criterion that could distinguish all

exponentially Ramsey sets is still unknown (see [13]). However, many examples
of exponentially Ramsey sets are known.

For example, Frankl and Wilson proved in [5] that the set S1 that consists of
two points at unit distance is exponentially Ramsey. It was proven in [12] and
[22] that

(1.239 . . .+ o(1))
n
< χ (Rn;S1) < (3 + o(1))

n

as n → ∞. Frankl and Rödl proved in [6] that the set S2 of vertices of a unit
equilateral triangle is exponentially Ramsey. It was proven in [17] and [26] that

(1.00085 . . .+ o(1))
n
< χ (Rn;S2) < (2.732 . . .+ o(1))

n
.

Our new Theorem 3 improves the lower bound from the last inequality. This
theorem is our first geometrical application of Theorem 2 in this section.

Theorem 3. One has

χ (Rn;S2) > (1.014 . . .+ o(1))
n
, as n→∞.

The second geometrical application of Theorem 2 is as follows. Following the
paper [4] we define ξm(Rn) as the maximum among the chromatic numbers of
distance graphs in Rn with the girth greater than m, where m ≥ 3. Kupavskii
proved in [11] that there is cm > 1 such that

ξm(Rn) > (cm + o(1))
n

as n → ∞. Let ξm be the supremum of constants cm such that the previous
inequality holds. Let us define this value more precisely.

Given m ≥ 3 we define G(n,m) as the family of all distance graphs in Rn that
do not contain cycles of length less than or equal to m. Then

ξm = lim inf
n→∞

max
G∈G(n,m)

χ(G)1/n.

It was proven in [26] and [29] that

ξm > 1 +
0.0133 . . .+ o(1)

m2 ln2m
,

as m → ∞. Our Theorem 2 can be used to replace the constant 0.0133 from the
numerator by a much larger value.
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Theorem 4. One has

ξm > 1 +
0.632 . . .+ o(1)

m2 ln2m
, as m→∞.

References

1. Akhmejanova M. B. and Shabanov D. A., Equitable colorings of hypergraphs with few edges,

Discrete Appl. Math. (2019).
2. Bobu A. V., Kupriyanov A. E. and Raigorodskii A. M., On the maximum number of edges in

a uniform hypergraph with one forbidden intersection, Doklady Math. 92 (2015), 401–403.

3. Bobu A. V., Kupriyanov A. E. and Raigorodskii A. M., Asymptotic study of the maximum
number of edges in a uniform hypergraph with one forbidden intersection, Sb. Math. 207

(2016), 652–677.

4. Demekhin E. E., Raigorodskii A. M. and Rubanov O. I., Distance graphs having large
chromatic numbers and not containing cliques or cycles of a given size, Sbornik Math. 204

(2013), 508–538.

5. Frankl P. and Wilson R. M., Intersection theorems with geometric consequences, Combina-
torica 1 (1981), 357–368.
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