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MAXIMUM INDUCED SUBGRAPHS

OF THE BINOMIAL RANDOM GRAPH

J. BALOGH and M. ZHUKOVSKII

Abstract. We prove that a.a.s. the maximum size of an induced tree in the bi-
nomial random graph G(n, p) is concentrated in four consecutive points. We also

consider the following problem. Given e(k), what is the maximum k such that

G(n, p) has an induced subgraph with k vertices and e(k) edges? For e = o( k ln k
ln ln k

),

we prove that a.a.s. this maximum size is concentrated in two consecutive points.

In contrast, for e(k) = p
(k
2

)
+ O(k), we prove that this size is not concentrated

in any finite set. Moreover, we prove that for an ωn → ∞, a.a.s. the size of the

concentration set is smaller than ωn

√
n/ lnn. Otherwise, for an arbitrary constant

C > 0, a.a.s. it is bigger than C
√

n/ lnn.

1. General framework

Consider a sequence Fk of sets of graphs on k vertices (i.e., for every k ∈ N, Fk is a
set of graphs on k vertices). Let Xn be the maximum k such that there exists F ∈
Fk and an induced subgraph H in the binomial random graph G(n, p) [1, 7, 12]
(edges in this graph appear independently with a constant probability p ∈ (0, 1))
such that H and F are isomorphic. Below, we briefly discuss the main results on
an asymptotical behaviour of Xn.

The first known related result describes an asymptotical behaviour of the in-
dependence number (the maximum size of an independent set) and the clique
number (the maximum size of a clique) of G(n, p) [3, 9]. It states that, for arbi-
trary constant p ∈ (0, 1), there exists f(n) such that asymptotically almost surely
(a.a.s.) the clique number of G(n, p) belongs to {f(n), f(n) + 1} (below, in such
situations we say that there is a 2-point concentration) (certain generalizations of
this result can be found in [8, 11]). By symmetry reasons, the same is true for
the independence number.

Clearly, the above concentration results are special cases of the considered gen-
eral problem. Indeed, Xn is the independence number (the clique number), if each
Fk contains only the empty (complete) graph.

A natural question to ask is, what happens in the case of ‘common’ graph
sequences, such as paths, cycles, etc.?
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Let, for k ∈ N, Fk = {Fk}. In [4], 2-point concentration results are obtained
for Fk = Pk (simple path on k vertices) and Fk = Ck (simple cycle on k vertices).

Let us turn to larger graph families Fk. The following families were consid-
ered by several researchers: trees, regular graphs, complete bipartite graphs and
complete multipartite graphs. For all these families, it was unknown, if there is a
2-point concentration, or even an m-point concentration for some fixed number m.
In 1983, Erdős and Palka [5] proved that, for trees (i.e., Fk consists of all trees on

k vertices), Xn

lnn

P→ 2
ln[1/(1−p)] as n → ∞ (hereinafter,

P→ denotes the convergence

in probability). In 1987, Ruciński [13] obtained a similar law of large numbers
type general result for a respectively wide class of graph families Fk. In partic-
ular, from his result follows that: if Fk are sets of ck(1 + o(1))-regular graphs,

then Xn

lnn

P→ 2
c ln[1/p]+(1−c) ln[1/(1−p)] as n → ∞. For several families of complete

bipartite and multipartite graphs, similar results were obtained in [10, 13].

2. Induced trees

In [4], the authors ask, is it true that, for trees, the 2-point concentration result
holds. We do not have an answer. Nevertheless, we prove the 4-point concentration
result. Let Xn be the maximum size of an induced tree in G(n, p).

Theorem 1. Let k = k(n) ≥ 1 be such that

k lnn− 5

2
ln k + k −

(
k

2

)
ln[1/(1− p)] + (k − 1) ln[p/(1− p)]− 1

2
ln(2π) = 0.

Then a.a.s. Xn ∈ {dke − 3, dke − 2, dke − 1, dke}.

3. Fixed number of edges

In [6], families of graphs having special edge conditions are considered. More
formally, given a sequence e = e(k), Fk = Fk(e) is a set of all graphs on k
vertices having at most e(k) edges. The main result of [6] states, in particular, the
following. Let e = e(k) = o( k ln k

ln ln k ) be a sequence of non-negative integers. Then
there is a function f(n) such that a.a.s. Xn ∈ {f(n), f(n) + 1}. We state that the
same is true for families of graphs having exactly e edges.

Theorem 2. Let e(k) be a sequence of non-negative integers such that e(k) =
o( k ln k

ln ln k ) and |t(k+1)−t(k)| = o(k/ ln k). Let Fk = Fk(e) be the set of all graphs on

k vertices with exactly e(k) edges. Then there exists k̂ = 2
ln(1/(1−p)) lnn(1 + o(1))

such that a.a.s. Xn ∈ {k̂ − 1, k̂}.

For the sake of convenience, let us denote the latter random variableXn by Xn[e]
(i.e., Xn[e] is the maximum k such that G(n, p) contains an induced subgraph with
k vertices and e(k) edges).

Clearly, the 2-point concentration result is also true when e(k) =
(
k
2

)
−o( k ln k

ln ln k ).
The natural question to ask: is the same true for e(k) close to the average number

of edges p
(
k
2

)
? We give the following negative answer on this question.
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Theorem 3. Let e(k) =
(
k
2

)
p+O(k) be a sequence of non-negative integers.

(i) There exists t > 0 such that, for c > t and C > 2c+ t, we have

0 < lim inf
n→∞

P

(
n− C

√
n

lnn
< Xn(e) < n− c

√
n

lnn

)
≤ lim sup

n→∞
P

(
n− C

√
n

lnn
< Xn(e) < n− c

√
n

lnn

)
< 1.

(ii) Let, for a sequence mk = O(
√
k/ ln k) of non-negative integers, the follow-

ing smoothness condition hold:∣∣∣∣(e(k)−
(
k

2

)
p

)
−
(
e(k −mk)−

(
k −mk

2

)
p

)∣∣∣∣ = o(k).

Then, for every ε > 0, there exist c, C such that

lim inf
n→∞

P

(
n− C

√
n

lnn
< Xn(e) < n− c

√
n

lnn

)
> 1− ε.

Remark. The first part of Theorem 3 implies that there is no m such that
Xn(e) is concentrated in m points. Moreover, the size of the concentration set is

O(
√

lnn
n ), and this asymptotical bound is best possible.

The smoothness condition in (ii) holds, in particular, for all e(k) =
(
k
2

)
p+ o(k).

To prove Theorems 1 and 2, we, as usual, use the so-called second moment
method.

Let us briefly discuss the scheme of our proof of Theorem 3. Denote f(k) =

e(k) −
(
k
2

)
p. Assume that Q ∈ R is such that −Qk ≤ f(k) ≤ Qk for all k. Fix

real numbers a1 < b1 < a2 < b2 such that a1 > 0, b1 > a1 + 2Q, a2 > 2b1,
b2 > a2 + 2Q. Consider the sets Ijn =

(
p
(
n
2

)
+ (aj +Q)n, p

(
n
2

)
+ (bj −Q)n

)
,

j ∈ {1, 2}. Let γ > 0 be such that, for n large enough,

(1) min
{
P(e(G(n, p)) ∈ I1n), P(e(G(n, p)) ∈ I2n)

}
> γ.

Moreover, for every ε > 0, consider a = a(ε) and b = b(ε) such that, for n large
enough, P (e(G(n, p)) ∈ In(ε)) > 1− ε, where

(2) In(ε) =

(
p

(
n

2

)
− (b−Q)n, p

(
n

2

)
+ (b−Q)n

)
r [e(n)− an, e(n) + an] .

Consider a sequence of integers m = m(n) ≤ c√
2p(1−p)

√
n

lnn . Denote M =

M(m) =
(
m
2

)
+ m(n −m) the maximum possible degree of an m-set. Then, for

a fixed m-set, the expected value of its degree equals pM . Consider the random
variable Ym = maxU∈(Vn

m ) δ(U). Since Y1 < pn+
√

2p(1− p)n lnn holds a.a.s. [2],

we immediately get that, a.a.s.

Ym ≤ mY1 < mpn+m
√

2p(1− p)n lnn

= Mp+m
√

2p(1− p)n lnn+ o(n) ≤Mp+ cn+ o(n).
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Under the assumption that e(G(n, p)) > p
(
n
2

)
+ (ai + Q)n, we should “kill” at

least ain extra edges to obtain at most Qn edges more than the average value.
Thus, if c < ai, a.a.s. we cannot reach the desired number of edges by removing
an m-set. Therefore, for every δ > 0, from (1), we get that

(3) P

(
Xn(e) < n− ai(1− δ)√

2p(1− p)

√
n

lnn

)
> γ

for all large enough n and i ∈ {1, 2}.
Since |f(n) − f(n − m)| = o(n), in the same way, from (2), we get that, for

all large enough n, with a probability greater than 1 − ε, Xn(e) is bounded from

above by n− a(1−δ)√
2p(1−p)

√
n

lnn . This finishes the proof of the upper bounds.

The overall idea of the proof of the lower bounds is to remove a small set
of vertices from G(n, p) and get it back after the major part of extra edges is
destroyed. More precisely, having (b + Q)n edges more than the average, we can

easily destroy extra bn edges by removing a set of O(
√
n/ lnn) vertices. But this

is far from what we need since f may differ a lot from its bound Q. Using a half
of the small set, we can reduce the number of extra edges up to O(

√
n lnn). The

second half is used to get the precise number of edges.
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