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CYCLES OF LENGTH THREE AND FOUR IN TOURNAMENTS

T. F. N. CHAN, A. GRZESIK, D. KRÁL’ and J. A. NOEL

Abstract. Linial and Morgenstern conjectured that, among all n-vertex tourna-

ments with d
(n
3

)
cycles of length three, the number of cycles of length four is asymp-

totically minimized by a random blow-up of a transitive tournament with all but

one part of equal size and one smaller part. We prove the conjecture for d ≥ 1/36

by analyzing the possible spectrum of adjacency matrices of tournaments. We also
demonstrate that the family of extremal examples is broader than expected and

give its full description for d ≥ 1/16.

1. Introduction

One of the oldest theorems in extremal graph theory is Mantel’s theorem [14],
which asserts that every n-vertex graph with more than n2/4 edges contains a
triangle. The Erdős–Rademacher Problem, which can be traced back to the work
of Rademacher in the 1940’s and the later work of Erdős [4], asks for the minimum
possible number of triangles in a graph with a given number of vertices and edges.
It was conjectured that this minimum is asymptotically attained by a complete
multipartite graph with all but one part of equal size and one smaller part. This
conjecture attracted substantial attention for several decades, see e.g. [1, 5, 8, 12],
until its solution by Razborov [17] using his newly developed flag algebra method.
Pikhurko and Razborov [16] described the asymptotic structure of all extremal
graphs and an exact description was obtained in [10]. The more general problem
of determining the minimum asymptotic density of k-cliques in graphs with given
edge-density (the Erdős–Rademacher Problem corresponds to the case k = 3) has
also been solved by Nikiforov [15] (the case k = 4) and by Reiher [18] in full
generality.
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We investigate a similar problem for tournaments posed by Linial and Morgen-
stern [9], who asked for the minimum density of 4-cycles in a large tournament with
fixed density of 3-cycles. They conjectured that the tournament asymptotically
minimizing this density is a blow-up of a transitive tournament with all but one
part of equal size and one smaller part in which the arcs within each part are ori-
ented randomly (they call this construction a random blow-up), i.e., the structure
of the conjectured extremal examples is akin to those of the Erdős–Rademacher
problem.

We confirm this conjecture in the case where the proposed extremal examples
have two or three parts and provide a full description of extremal tournaments in
the two part case. In contrast to many of the recent proofs in this area that use
the flag algebra method, our approach is based on the analysis of the spectrum of
adjacency matrices of tournaments.

2. Statement of the problem

We now state the problem that we study formally. The density of the directed
cycle C` of length ` in a tournament T , denoted by t(C`, T ), is the probability
that a random mapping from V (C`) to V (T ) is a homomorphism (i.e. arcs of C`

map to arcs of T ). Note that, for fixed `, a tournament T on n vertices contains
t(C`, T )n`/`+O(n`−1) cycles of length `.

Figure 1. An illustration of the random blow up construction for z = 3/8.

Our focus is on bounding the minimum possible value of t(C4, T ) asymptotically
as a function of t(C3, T ). To motivate the definition of a function g later, we
describe the family of conjectured tight examples from [9] for this problem. Fix
z ∈ [0, 1] and n ∈ N. We define an n-vertex tournament T as follows (see Figure 1
for an illustration). If z = 0, then let T be a transitive tournament. Otherwise, the
vertices of T are split into bz−1c+1 disjoint parts V1, . . . , Vbz−1c+1 such that bz−1c
parts contain exactly bznc vertices and the remaining part contains the rest of the
vertices (note that if z−1 and zn are integers, then the last part is empty). If two
vertices v and v′ belong to distinct parts Vi and Vj with i < j, then the tournament
T contains an edge from v to v′. If v and v′ belong to the same part, then the
edge between them is oriented from v to v′ with probability 1/2, i.e., each part
itself induces a random tournament. It is easy to see that t(C3, T ) = t(C4, T ) = 0



CYCLES OF LENGTH THREE AND FOUR IN TOURNAMENTS 535

if z = 0 and, if z ∈ (0, 1], then, with high probability, it holds that

t(C3, T ) =
1

8

(
bz−1cz3 +

(
1− bz−1cz

)3)
+ o(1) and

t(C4, T ) =
1

16

(
bz−1cz4 +

(
1− bz−1cz

)4)
+ o(1).
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Figure 2. The conjectured region of asymptotically feasible densities of C3 and C4 in tourna-
ments. The lower bound for t(C3, T ) ∈ {1/8, 1/32} and the upper bound were proved in [9]. The
rest of the lower bound is conjectured except for the part depicted in bold, which we prove here.

Linial and Morgenstern [9] conjectured that the above construction is asymp-
totically optimal. To state their conjecture, we define a function g : [0, 1/8]→ [0, 1]
as follows: g(0) = 0 and

g

(
1

8

(
bz−1cz3 +

(
1− bz−1cz

)3))
=

1

16

(
bz−1cz4 +

(
1− bz−1cz

)4)
for z ∈ (0, 1].

Note that t(C3, T ) ≤ 1/8 for every tournament T .

Conjecture 1 (Linial and Morgenstern [9, Conjecture 2.2]). It holds that

t (C4, T ) ≥ g (t(C3, T )) + o(1)

for every tournament T .

The conjecture is currently only known to hold for tournaments with 3-cycle
density asymptotically equal to 1/8 or 1/32 [9]. Our results confirm the conjecture
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for all 3-cycle densities in the range [1/72, 1/8], i.e., in the regimes of two and three
parts. We refer to Figure 2 for the visualization of our results and the conjectured
feasible region of 3-cycle and 4-cycle densities.

Conjecture 1 appears to be resistant to the flag algebra method (our proof
uses an analysis of spectra of adjacency matrices of tournaments). We believe
that the difficulty in applying the flag algebra method is rooted in the fact that
random blow-ups of transitive tournaments are not the only extremal examples for
Conjecture 1. In particular, a rather complicated family of extremal examples T
is described as follows. Denote the vertices of T by v1, . . . , vn and associate vi
with a real number pi ∈ [0, 1/2], i = 1, . . . , n. Then, direct the edge vivj from vi
to vj with probability 1/2 + pi − pj . Note that, if all the values of pi are either
0 or 1/2, then this construction is nothing more than a random blow-up of a
2-vertex tournament, i.e., it is identical to the examples of [9] for 3-cycle density
in [1/32, 1/8]. For large n, this tournament satisfies t(C4, T ) = g(t(C3, T )) + o(1)
with high probability (this follows from Theorem 8). In particular, all tournaments
obtained in this way are extremal with respect to Conjecture 1 in the regime of two
parts. In Corollary 9, we prove that these are asymptotically the only extremal
constructions in the regime of two parts.

3. Tournament matrices and tournament limits

In this section, we introduce the notation that we use, including the notions of
tournament matrices and tournament limits. If A is a matrix, then we write AT

for its transpose. The trace of a square matrix A is the sum of the entries in its
diagonal and is denoted by TrA. We use Jn to denote the square matrix of order n
such that each entry of Jn is equal to one; if n is clear from the context, we will omit
the subscript. We say that a square matrix A of order n is a tournament matrix
if A is non-negative and A + AT = J; in particular, if A is a tournament matrix,
then each diagonal entry of A is equal to 1/2. Every n-vertex tournament T can
be associated with a tournament matrix A of order n, which we refer to as the
adjacency matrix of T , in the following way. Each diagonal entry A is equal to
1/2 and, for i 6= j, the entry of A in the i-th row and the j-th column (denoted
Ai,j) is equal to 1 if T contains an edge oriented from the i-th vertex to the j-th
vertex, and it is equal to 0 otherwise. The following proposition readily follows.

Proposition 2. Let T be a tournament on n vertices, A be the adjacency matrix
of T and ` ≥ 3. The number of homomorphisms of C` to T is TrA` +O(n`−1).

Recall that the trace of a matrix is equal to the sum of its eigenvalues and that
the eigenvalues of the `-th power of a matrix are the `-th powers of its eigenvalues.
In view of Proposition 2, for ` ≥ 1, we define σ`(A) for a square matrix A of
order n to be

σ`(A) =
1

n`

n∑
i=1

λ`i =
1

n`
TrA`,

where λ1, . . . , λn ∈ C are the eigenvalues of A. Note that the normalization of the
sum is chosen in such a way that σ1(A) = 1/2 for every tournament matrix A.
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It is not hard to see that Conjecture 1 is equivalent to the following.

Conjecture 3. If A is a tournament matrix, then σ4(A) ≥ g(σ3(A)).

To describe the asymptotically optimal tournaments in the regime of two parts,
we use the language of the theory of combinatorial limits. Below, we define basic
concepts concerning tournament limits. These are analogous to those concerning
graph limits, which can be found, e.g., in the monograph on graph limits by
Lovász [11]. In fact, most statements on graph limits readily translate to the
setting of tournaments with essentially the same proofs.

A tournament limit is a measurable function W : [0, 1]2 → [0, 1] such that
W (x, y) + W (y, x) = 1 for all (x, y) ∈ [0, 1]2. One can define the density of
the cycle C` in W as follows:

t(C`,W ) =

∫
x1,...,x`∈[0,1]

W (x1, x2)W (x2, x3) · · ·W (x`−1, x`)W (x`, x1) dx1 · · ·x` .

Note that any n-dimensional tournament matrix A can be represented by a tour-
nament limit WA by dividing [0, 1] into sets I1, . . . , In of measure 1/n and setting
W equal to Ai,j on the set Ii× Ij . It is easily observed that t(C`,WA) is precisely
σ`(A). The following proposition links densities of cycles in tournament limits and
in tournaments.

Proposition 4. The following two statements are equivalent for every sequence
(s`)`≥3 of non-negative reals:

• There exists a tournament limit W such that t(C`,W ) = s` for every ` ≥ 3.
• There exists a sequence (Ti)i∈N of tournaments with increasing orders such
that

lim
i→∞

t(C`, Ti) = s` for every ` ≥ 3.

Hence, another equivalent formulation of Conjecture 1 is the following.

Conjecture 5. It holds t(C4,W ) ≥ g(t(C3,W )) for every tournament limit W .

4. Main results

The proof of Conjecture 1 in the regimes of two and three parts is based on the
following theorem on spectra of tournament matrices.

Theorem 6. Let A be a tournament matrix of order n. If σ3(A) ≥ 1/72, then
σ4(A) ≥ g(σ3(A)).

An immediate corollary of Theorem 6 in the setting of tournament limits is the
following.

Corollary 7. Let W be a tournament limit. If t(C3,W ) ≥ 1/72, then it holds
that t(C4,W ) ≥ g(t(C3,W )).

In the regime of two parts, we can characterize tournament matrices where the
equality holds.
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Theorem 8. Let A be a tournament matrix of order n. If σ3(A) ≥ 1/32, then
σ4(A) ≥ g(σ3(A)) with equality if and only if there exists a vector z ∈ Rn such
that Ai,j = 1/2 + zi − zj for i, j ∈ [n].

Interpreting Theorem 8 in the language of tournament limits, we obtain the
following corollary.

Corollary 9. Let W be a tournament limit. If t(C3,W ) ≥ 1/32, then it holds
that t(C4,W ) ≥ g(t(C3,W )) and the equality holds if and only if there exists a
measurable function f : [0, 1]→ [0, 1/2] such that W (x, y) = 1/2 + f(x)− f(y) for
almost every (x, y) ∈ [0, 1]2.

We finish with a high level overview of the proofs of Theorems 6 and 8. To
prove Theorem 6, we consider the following optimization problem involving com-
plex numbers z1, . . . , zn. The goal is to minimize z41 + · · · + z4n subject to the
following constraints: each zi has a non-negative real part, z1 + · · · + zn = 1/2,
z31 + · · ·+ z3n = σ3(A), if zi has a positive complex part, then zi+1 = zi, and if
zi has a negative complex part, then zi−1 = zi. The problem is set up in a way
that if A is a tournament matrix of order n with eigenvalues λ1, . . . , λn, then
λ1/n, . . . , λn/n form a feasible solution. The analysis of optimal solutions of this
problem yields the proof of Theorem 6.

To prove Theorem 8, we consider the skew-symmetric matrix B defined as
J − 2A. Informally, the matrix B reflects how much the tournament differs from
the quasirandom tournament. The traces of the third and fourth powers of A are
related to B as follows:

8 TrA3 = Tr(J−B)3 = Tr J3 + 3 Tr JB2 and

16 TrA4 = Tr J4 + 4 Tr J2B2 + TrB4 = −1

3
Tr J4 +

32

3
TrA3 + TrB4 .

Hence, if the order of A and the value of TrA3 are fixed, the goal is to minimize
TrB4, i.e., the sum of the fourth powers of the eigenvalues of B. The analysis
of this optimization problem involving the spectrum of B is performed using the
block diagonal form of skew-symmetric matrices.
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