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HOMOMORPHISM-HOMOGENEITY CLASSES

OF COUNTABLE L-COLORED GRAPHS

A. ARANDA and D. HARTMAN

Abstract. The notion of homomorphism-homogeneity, introduced by Cameron

and Nešetřil, originated as a variation on ultrahomogeneity. By fixing the type

of finite homomorphism and global extension, several homogeneity classes, called
morphism extension classes, can be defined. These classes are studied for various

languages and axiom sets. Hartman, Hubička and Mašulović showed for finite undi-

rected L-colored graphs without loops, where colors for vertices and edges are chosen
from a partially ordered set L, that when L is a linear order, the classes HH and

MH of L-colored graphs coincide, contributing thus to a question of Cameron and

Nešetřil. They also showed that the same is true for vertex-uniform finite L-colored
graphs when L is a diamond. In this work, we extend their results to countably

infinite L-colored graphs, proving that the classes MH and HH coincide if and only
if L is a linear order.

Some interesting graph properties are represented by various versions of struc-
tural symmetry. An example is vertex transitivity, the condition that for every
pair of vertices there exists an automorphism of the graph mapping one to the
other. These symmetry conditions are interesting on their own and have appli-
cations in other fields where definable graphs may appear. Ultrahomogeneity is
one of the strongest notions of symmetry. A graph is ultrahomogeneous if for any
isomorphism f between finite induced subgraphs there is an automorphism of the
ambient graph that extends f . A countable ultrahomogeneous relational struc-
ture is ω-categorical and eliminates quantifiers, so ultrahomogeneous structures
are interesting from the point of view of model theory and group theory.

The fundamental theorem of ultrahomogeneity, which states the equivalence
between ultrahomogeneity in countable relational structures and some properties
of the set of induced finite substructures, was proven by Fräıssé [8]. For any given
class of relational structures, one naively expects only a few of them to satisfy
such a strong symmetry condition, and this is indeed the case for most of the
classes that have been studied so far (but families with a maximal number of
ultrahomogeneous members exist, for example directed graphs [6]). For example,
other than the obvious finite cases of complete graphs, complete bipartite graphs,
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and their complements, only C5 and the line graph of K3,3 are ultrahomogenous
[9]. In the case of countably infinite undirected graphs, there are only countably
many ultrahomogeneous graphs, and they fall neatly in a few families, as shown by
the celebrated Lachlan-Woodrow theorem [13]. Ultrahomogeneous structures have
been heavily studied in the past decade from many points of view, such as the study
of CSPs with ultrahomogeneous templates by Bodirsky [3], relational complexity
(introducing new predicates to homogenize a structure while minimizing arities of
the new relations, [11]) and the related connections to the Ramsey property by
Hubička and Nešetřil [12].

If we take the definition of ultrahomogeneity and shift it from the category
of L-structures with isomorphisms to the category of L-structures with homo-
morphisms, we obtain the definition of homomorphism-homogeneity, introduced
by Cameron and Nešetřil [4]. More formally, an L-structure is homomorphism-
homogeneous if any homomorphism between finite induced substructures is the
restriction of an endomorphism. We can refine this definition by restricting the
kind of local homomorphism (we could add no more hypotheses or require it to
be injective or an isomorphism) and endomorphism. Lockett and Truss [14] did
exactly this to define several morphism-extension classes. Following the notation
from [4], they use a pair of characters XY to denote the morphism-extension class
in which any local X-morphism is restriction of a a global Y -morphism. Here
X ∈ {H,M, I} stands for homo, mono or iso and Y ∈ {H,A, I,B,E,M} stands for
homo, auto, iso, bi, epi or mono. Thus, for example, the notion of homomorphism-
homogeneity above is what we will call HH-homogeneity, and ultrahomogeneity is
IA-homogeneity.

HH-homogeneity has not been studied as intensely as ultrahomogeneity. While
we have a classification of finite HH-homogeneous graphs (not very interesting
since only complete and empty finite graphs are HH-homogeneous [4]), we do
not have an analogue of the Lachlan-Woodrow theorem for HH. In fact, only two
families of connected HH-homogeneous graphs appear in the literature, namely
those graphs that contain the Rado graph as a spanning subgraph [4] and the
Rusinov-Schweitzer examples [18]. Recently the authors have produced new fam-
ilies of connected countably infinite HH-homogeneous graphs that do not contain
the Rado graph as a spanning subgraph, one of them parametrized by two natu-
ral numbers [2]. Homomorphism-homogeneity has also been studied in different
contexts, e.g. HH-homogeneity for infinite-domain CSP [16] or equivalence of
two types of convergence for a graph sequence that converge elementarily to an
IH-homogeneous graph [15].

Since any monomorphism is a homomorphism we can see that HH is always a
subclass of MH, and we can partially order morphism-extension classes using ⊆, as
presented in greater extent in [14]. Already in the original paper by Cameron and
and Nešetřil [4] the question was asked: Do MH and HH coincide for countable
undirected graphs? Rusinov and Schweitzer answered the question in the affirma-
tive in [18]. We explore this question for countably infinite L-colored graphs. Full
versions of the arguments can be found at [1].
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We will consider relational structures with finitely many predicates that are par-
tially ordered, so the language and the partial order will be used interchangeably.
If L is a finite partially ordered language with maximal arity 2, an L-structure
consists of a countably infinite set and mutually exclusive from L. Moreover, the
binary relations are irreflexive and symmetric. The role of the partial order on
the language is to model multiple edges of different type on the same pair of ver-
tices (or multiple unary predicates on a vertex), so we will modify our notion of
homomorphism accordingly (see Definition 2 below).

We will not mention the language when it is clear from the context or when we
use these properties as an adjective. Abbreviated statements like “G is MH” or
“G is MH-homogeneous” mean that the structure G belongs to the class MHL,
where L is the appropriate language (which further below will be identified with
one or two finite partial orders).

Definition 1. A P,Q-colored graph is a tuple (V, P,Q, χ, ξ), where V is a
vertex set, P and Q are two disjoint finite partially ordered sets, χ : V → P is an
arbitrary function, and ξ : V 2 → Q is a symmetric function with ξ(v, v) = 0 for
all v ∈ V . Our partial orders are always finite and have a minimum element 0
(corresponding to uncolored vertices and nonedges).

We will say that a P,Q-colored graph M is vertex-uniform if χ is constant.

Definition 2. A homomorphism between (G,P,Q, χ, ξ) and (H,P,Q, χ′, ξ′) is
a function f : G → H, such that for all v ∈ G, χ(v) ≤P χ′(f(v)) and for all pairs
{x, y} ∈ G2, ξ(x, y) ≤Q ξ′(f(x), f(y)).

Note that in Definition 2 we require the same “language,” i.e., the same pair
of partial orders, in both structures. For structures being MH we will use a sym-
bol MHP,Q in case of P,Q-colored graphs and (by convention) MHQ in case of
Q-colored graph, i.e., when vertices have no or same colors assigned.

For finite Q-colored graphs where Q is either a linear order or a diamond, i.e.,
set of incomparable elements extended by a minimal and a maximal elements, it
was been shown in [10] that the classes MHQ and HHQ coincide. However, there
are examples of finite Q-colored graph, i.e., without colors for vertices, which are
HH and not MH. This led authors to ask the following question

Problem 3. Do MH and HH coincide for countably infinite Q-colored graphs
with all vertices uncolored?

Depending on the answer to the above stated problem authors have asked the
following general question.

Problem 4. Do MH and HH coincide for countably infinite P,Q-colored
graphs?

We address both questions in our work, answering negatively for both problems.
Moreover, we identify the subclass where the equality holds.

Theorem 5. Let P and Q be finite partially ordered sets. MHP,Q = HHP,Q if
and only if Q is a linear order.
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Since the first paper on homorphism-homogeneity by Cameron and Nešetřil [4]
there is an ongoing discussion on the relationship between various homomorphism-
homogeneous classes. Some of the central relationships have been explained for
countable undirected graphs [18] and others have been studied to a particular
depth for more general structures [14]. This is of interest also due to recent studies
of Fräıssé-type theorems for various classes of homomorphism-homogeneity [17, 7]
resulting in countable structures in a given morphism-extension class. Considering
how we modified the notion of homomorphism to model graphs with multiple types
of edge allowed between two vertices, Theorem 5 tells us that the coincidence of
MH and HH is a rare occurrence.

To show that equality of classes given in Theorem 5 is implied by a total order
on Q we use a careful handling of specific transversals for a local homomorphism
that is about to be extended. For the converse, i.e. assuming that Q is a linear
order, we make use of Lemma 6 below. Let us remind that a partially ordered set
is a directed set if every pair of its elements has an upper bound.

Lemma 6. Let Q and P be finite partially ordered. If MHP,Q = HHP,Q, then
Q is a directed set.

The idea behind this lemma is that a finite partially ordered set that is not
a directed set has several maximal elements that represent maximal colors for
P,Q-colored graphs. For any such partially ordered set we can utilize a Fräıssé
limit to construct a P,Q-colored graph for which is MHP,Q but not HHP,Q. For
this purpose, let us first define the following partially ordered set.

Definition 7. For any n ≥ 1, Fn is the partial order consisting of an antichain
of size n and a minimum element 0.

Let Cn the class of finite graphs with edges colored by Fn in the sense of
Definition 1. This class has many interesting properties from which the most
important is that it is a Fräıssé class with free amalgamation. This means that
there exists a Fräıssé limit Rn for this class, i.e. a Fn-colored graph which is
universal (contains all countable structures whose ages are contained in Cn as
induced substructures), and ultrahomogeneous. Additionally, the following holds.

Proposition 8. Rn is MH but not HH.

This can be shown via utilization of extension property, generalizing the one
defined for Rado graph [5], defined as follows

(♦n)
If G1, . . . , Gn+1 are finite disjoint subsets of Rn, then there exists x ∈
RnrGn+1 such that each vertex of Gi is related to x by an edge of color
ci for 1 ≤ i ≤ n, and for each vertex y of Gn+1, the pair xy is a nonedge.

The main role of this property is ability to ensure MH-homogeneity. While Rn

has no vertex colors this proposition negatively answered the Problem 3.
Thanks to a claim in Lemma 6 we know that while assuming Q not being linear

order under condition of Theorem 5 we know that Q is a directed set. To show that
this implies existence of M which is MHP,Q but not HHP,Q we can use a process
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that is ideologically based on the following example. But first, let us provide more
formal definition of a partially ordered set called a diamond.

Definition 9. Given n ≥ 2, Dn is the partial order consisting of a finite an-
tichain of size n, a minimum element 0, and a maximum element 1.

Having diamond formally defined, let us describe a structure M colored by D2

via iterative process of its construction

1. Start with a countably infinite clique of color 1 partitioned into six count-
ably infinite cliques M0

x ,M
1
x for x ∈ {a, b, c}; for simplicity, use Mx to

denote M0
x ∪M1

x .
2. Add three new vertices a, b, c and connect x ∈ {a, b, c} to Mx with edges of

color 1.
3. Connect with color R the cliques M0

a to b, M0
b to c, M0

c to a, and all other
edges from a clique with superindex 0 to an element of {a, b, c} with color B.
The colors are reversed for the M1

x , that is, if M0
x is connected to y by color

R, then M1
x is connected to y in color B (x ∈ {a, b, c}, y ∈ {a, b, c}r {x}).

4. There are no other edges in M .

Note that {a, b, c} forms an independent set and contains all the non-edges
in M . Similarly to graph Rn we can show that.

Proposition 10. M is MH and not HH.

This structure provides again an example of Q-colored graph distinguishing
classes MH and HH, but more important role it plays in proof of Theorem 5.
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8. Fräıssé R., Sur certaines relations qui généralisent l’ordre des nombres rationnels, C. R.
Math. Acad. Sci. Paris 237 (1953), 540–542.

9. Gardiner A., Homogeneous graphs, J. Combin. Theory Ser. B 20 (1976), 94–102.
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