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COLOURING NON-EVEN DIGRAPHS

M. G. MILLANI, R. STEINER and S. WIEDERRECHT

Abstract. A colouring of a digraph as defined by Neumann-Lara in 1982 is a

vertex-colouring such that no monochromatic directed cycle exists. The minimal

number of colours required for such a colouring of a digraph is defined to be its
dichromatic number. This quantity has been widely studied in the last decades and

is a natural directed analogue of the chromatic number of a graph. A digraph D

is called even if for every 0-1-weighting of the edges it contains a directed cycle of
even total weight. We show that every non-even digraph has dichromatic number at

most 2 and an optimal colouring can be found in polynomial time. We strengthen a

previously known NP-hardness result by showing that deciding whether a directed
graph is 2-colourable remains NP-hard even if it contains a feedback vertex set of

bounded size.

1. Introduction

The graphs we consider are simple, for digraphs however we allow antiparallel
edges (digons). A set X ⊆ V (D) is called acyclic if D[X] is acyclic. A feedback
vertex set F in a digraph is the complement of an acyclic vertex set, that is, F
contains a vertex of each directed cycle. A proper colouring of a digraph D with k
colours is a function c : V (D)→ [k] such that the colour classes c−1(i) are acyclic
for every 1 ≤ i ≤ k. The dichromatic number ~χ(D) is the smallest integer k, such
that D has a proper colouring with k colours.

One of the arguably most influential problems in graph theory was the Four-
Colour-Conjecture, answered positively by Appel and Haken in 1976. As a directed
version of this famous theorem, the Two-Colour-Conjecture posed by Erdős and
Neumann-Lara and independently by Skrekovski (see [1]) still stands open. A
digraph D is called oriented if its underlying undirected graph is simple.

Conjecture 1.1 ([12]). Every oriented planar digraph D is 2-colourable.

An edge (u, v) in a digraph D is butterfly contractible if it is the only outgoing
edge of u or the only incoming edge of v. Contracting a butterfly contractible edge
and identifying parallel edges afterwards is called a butterfly contraction of that
edge. A digraph D′ is a butterfly minor of D if it can be obtained by butterfly
contractions from a subdigraph of D. The notion of butterfly minors has been
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established in several contexts as a natural and sensible way of defining a digraph
minor.

For graphs, colourings of minor-closed classes such as the planar graphs have
received wide attention. One of the most intriguing problems in this area is Had-
wiger’s Conjecture, which has only been proved for k ≤ 5.

Conjecture 1.2 ([6]). For any k ∈ N, every graph G without a Kk+1-minor is
k-colourable.

While the above provides a simple characterisation of the largest minor-closed
subclass of the k-colourable graphs, we ask the analogous question for digraphs.

Question 1.1. For k ∈ N, what is the largest butterfly-minor closed class Dk
of k-colourable digraphs?

In this paper, we initiate the study of this question by settling the first non-
trivial case of k = 2, showing that D2 consists exactly of the so-called non-even
digraphs: A digraph D is called even if, for every edge weighting w : E(D) →
{0, 1}, there exists a directed cycle of even total weight in D, otherwise it is
called non-even. For us, the following characterisation obtained by Seymour and
Thomassen is crucial. An odd bicycle is the bidirection of an odd cycle, i.e., every
(undirected) edge is replaced by a digon.

Theorem 1.1 ([14]). A directed graph is non-even if and only if it does not
contain an odd bicycle as a butterfly minor.

Odd bicycles have dichromatic number 3 and therefore, by the above, D2 must
be contained in the class of non-even digraphs. Our main contribution is to show
the converse of this statement.

Theorem 1.2. Let D be a non-even digraph. Then ~χ(D) ≤ 2.

Note that this result does not directly relate to the 2-Colour Conjecture, as
there are non-planar non-even digraphs and planar even digraphs. This is because
the oriented planar digraphs are not closed under butterfly minors. However, the
class of planar non-even digraphs is non-trivial and contains for instance the so-
called strongly planar digraphs. For these digraphs, Theorem 1.2 yields a proof of
Conjecture 1.1.

2. Matching colourings and forcing sets

There is a bijective correspondence between digraphs and bipartite graphs with a
distinguished perfect matching and a bipartition: Consider an arbitrary bipartite

graph G = (A∪̇B,E) with the canonical orientation ~G(A,B), in which every edge
starts in A and ends in B. For any perfect matching M , the digraph D(G,M)

obtained from ~G(A,B) by contracting all matching edges into vertices is called the
M -direction of G. It is not hard to reverse the described relationship to see that
every digraph is an M -direction of its bipartite splitting-graph with the canon-
ical perfect matching. In this context, it can be shown that non-even digraphs
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correspond exactly to the class of bipartite Pfaffian graphs. The latter can be
characterised in terms of forbidden so-called matching minors of graphs, which
correspond to butterfly minors of digraphs. A subgraph H of a graph G is called
conformal, if G − V (H) has a perfect matching. The bicontraction of a vertex of
degree 2 in a graph consists of contracting both incident edges at the same time.
A matching minor of a graph now is obtained from a conformal subgraph by re-
peated bicontractions of vertices of degree 2. A bisubdivision of a graph consists
of subdividing each edge with an even number of vertices.

Theorem 2.1 ([9]). The bipartite Pfaffian graphs are exactly those excluding
K3,3 as a matching minor. Moreover, for any bipartite graph G with a perfect
matching M , G is Pfaffian if and only if D(G,M) is non-even.

It is easy to see that the directed cycles in the M -direction of a bipartite graph
are in bijection with the M -alternating cycles of G. The following is a natural
analogue of the dichromatic number in the context of perfect matchings on graphs.

Definition 2.1. Let G be a graph with a perfect matching M . An M -colouring
of G with k ∈ N colours is a mapping c : M → [k] such that for each i ∈ [k],
c−1(i) ∪ (E(G) rM) does not contain an M -alternating cycle. The M -chromatic
number χ(G,M) of a graph is the minimal number of colours required for an
M -colouring.

Closely related to the above definition is the notion of a forcing set. Given a
graph G and a perfect matching M , a partial matching S ⊆M is called forcing if
M is the unique extension of S to a perfect matching in G. It is not hard to see
that a perfect matching M of a graph is k-colourable iff there exists a partition
of M into subsets S1, . . . , Sk such that for any i, M r Si is forcing. Therefore,
Theorem 1.2 can be rephrased as follows.

Theorem 2.2. Every bipartite graph G with χ(G,M) ≥ 3 for some perfect
matching M contains K3,3 as a matching minor. Equivalently, every perfect
matching of a Pfaffian bipartite graph can be partitioned into two forcing sets.

Using the theory of decompositions of graphs into bricks and braces introduced
by Lovász ([10]) and the theory on non-bipartite matching covered graphs devel-
oped by de Carvalho et. al. [2, 8], we are able to obtain similar results for classes
of non-bipartite graphs.

Theorem 2.3. If G is planar and prism-free, i.e., without a bisubdivision of
C6 (the triangular prism) as a conformal subgraph, then every perfect matching
can be partitioned into two forcing sets.

The above results directly yield upper bounds of |V (G)|
4 on the minimal size of

a forcing set for perfect matchings in the considered graph classes, which, to the
best of our knowledge, was not known before. See [3] for a comprehensive survey
on this topic.
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3. 2-colourings of non-even digraphs

In this section we want to give a very brief sketch of the ideas involved in the
proof of Theorem 1.2. The key idea is to disprove the existence of a minimal
(with respect to the number of vertices) non-2-colourable non-even digraph by
applying local reductions of non-even digraphs that on the one hand transport
2-colourability, while on the other hand ensure that we keep the property of being
non-even. The fact that a minimal counterexample cannot be reducible is then
lead to a contradiction by showing that any non-even digraph on more than two
vertices can be reduced using one of the operations.

Using split operations along directed cuts and cut vertices, we start by reducing
the problem to strongly 2-connected non-even digraphs. Robertson et al. [13]
defined five different sum operations which they used to prove a generation theorem
for non-even digraphs. From this we deduce the following.

Corollary 3.1. Any strongly 2-connected, non-even digraph D on at least three
vertices contains a vertex v ∈ V (D) of out-degree 2.

Having found such a vertex v of out-degree 2, we consider different cases con-
cerning the local structure of the digraph around v. If v is contained in at most
one digon, we apply certain deletions and a butterfly contraction to reduce the
digraph, otherwise, we directly contract v and the two vertices with which v forms
a digon each, into a single vertex. While this is not a standard butterfly contrac-
tion, we are able to make sense of it and show that is preserves the property of
being non-even. The argument uses insights from matching theory.

The proof of Theorem 1.2 can easily be turned into a polynomial time algorithm
to find a proper 2-colouring of a non-even digraph. Additionally, the work of
Robertson et. al. and McCuaig [13, 11] imply polynomial time algorithms to
recognise non-even digraphs. Hence given a digraph D we can decide whether it
is non-even and then find a proper 2-colouring in polynomial time.

4. Parametrised complexity of digraph colourings

In contrast to the positive algorithmic result from the previous section, deciding
whether a given digraph D has dichromatic number at most k is NP-hard for all
k ≥ 2 [5]. One could hope for a parametrised algorithm with respect to treewidth,
as this approach works for undirected graphs by using Courcelle’s Theorem [4].
However, the following results show that these positive results do not carry over
to the world of digraphs. In fact, deciding whether a digraph is 2-colourable is
NP-hard even if τ(D) ≤ 6, where D is the input digraph and τ(D) denotes the size
of a minimum feedback vertex set in D. Consequently computing the dichromatic
number is hard even if the size of a feedback vertex set or the directed treewidth
is small. This strengthens the previous hardness reduction due to [1].

The out-degeneracy d(D) of a digraph is defined to be the least integer x such
that D and all of its subdigraphs contain a vertex of out-degree at most x. Re-
ducing from SAT, we obtain the following.
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Theorem 4.1. For each k ≥ 2, Digraph k-Colouring is NP-hard even if
τ(D) ≤ k + 4 and d(D) ≤ k + 1, where D is the input digraph.

The hardness result above is relatively tight with respect to τ(D) and d(D):
Using a greedy strategy, it is easy to find a k-colouring if τ(D) ≤ k− 1 or d(D) ≤
k − 1. In contrast, Theorem 4.1 excludes an nf(k)-time algorithm under the hy-
pothesis P 6=NP if we only assume τ(D) ≤ k + 4 and d(D) ≤ k + 1 instead.

A finer analysis gives a stronger hardness result under the well-known exponen-
tial time hypothesis [7], which states that there is no subexponential-time algorithm
for k-SAT

Theorem 4.2. For each k ≥ 2 there is some ε > 0 such that no 2εnnf(x,y)

algorithm for Digraph k-Colouring exists, where x = τ(D), y = d(D) and f
is some function, unless the ETH is false.
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