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COLORING HYPERGRAPHS DEFINED BY STABBED
PSEUDO-DISKS AND ABAB-FREE HYPERGRAPHS

E. ACKERMAN, B. KESZEGH and D. PÁLVÖLGYI

Abstract. What is the minimum number of colors that always suffice to color
every planar set of points such that any disk that contains enough points contains
two points of different colors? It is known that the answer to this question is either
three or four. We show that three colors always suffice if the condition must be
satisfied only by disks that contain a fixed point. Our result also holds, and is even
tight, when instead of disks we consider their topological generalization, namely
pseudo-disks, with a non-empty intersection. Our solution uses the equivalence that
a hypergraph can be realized by stabbed pseudo-disks if and only if it is ABAB-free.
These hypergraphs are defined in a purely abstract, combinatorial way and our proof
that they are 3-chromatic is also combinatorial.

1. Introduction

Given a family of hypergraphs H and a positive integer c, let m(H, c) denote the
least integer such that the vertices of every hypergraph H ∈ H can be colored with
c colors such that every hyperedge of size at least m(H, c) is non-monochromatic
(i.e., contains two vertices with different colors). In other words, for every hyper-
graph H ∈ H the sub-hypergraph of H that consists of all the hyperedges of size
at least m(H, c) is c-colorable. We denote by χm(H) the least integer c for which
such a finite m(H, c) exists.

A family of geometric (or topological) regions F and a set of points S naturally
define a hypergraph H(S,F) whose vertices are the points in S and whose hyper-
edge set consists of every subset S′ ⊆ S for which there is a region F ′ ∈ F such
that S′ = F ′ ∩ S. The family of (finite) hypergraphs H(F) defined by a family of
geometric regions F consists of all the hypergraphs H(S,F) for some (finite) point
set S. We also say that F can realize H(S,F). By a slight abuse of notation we
thus write m(F , c) and χm(F) instead of m(H(F), c) and χm(H(F)), respectively.

Received June 2, 2019.
2010 Mathematics Subject Classification. Primary 05C15.
Research by the first author was partially supported by ERC AdG Disconv and MTA EU10/2016-
11001.
Research by the second author was supported by the National Research, Development and In-
novation Office – NKFIH under the grant K 116769.
Research by the second and third authors was supported by the Lendület program of the Hun-
garian Academy of Sciences (MTA), under grant number LP2017-19/2017.



364 E. ACKERMAN, B. KESZEGH and D. PÁLVÖLGYI

Typically, one is interested in determining whether it holds that χm(F) = 2 or
at least χm(F) < ∞ for a given family of geometric regions F . These questions
are motivated by problems concerning cover-decomposability and conflict-free col-
orings. For more about these connections we refer to the surveys [12, 17]. For
example, it is known [3] that m(F�, 2) ≤ 215, where F� is the family of axis-
parallel squares in the plane. In other words, it is possible to color any set of points
in the plane with the colors blue and red, such that every axis-parallel square that
contains at least 215 points from this set of points contains a blue point and a red
point. Since, by definition, χm(H) > 1, it follows that χm(F�) = 2. On the other
hand, considering the family of axis-parallel rectangles F@A, it is known [6] that
χm(F@A) is infinite.

An intriguing question is to determine χm(F©), where F© is the family of
disks in the plane. It follows from the Four Color Theorem and the planarity of
Delaunay-triangulations, that any finite set of points can be 4-colored such that no
disk containing at least two points is monochromatic, i.e., m(F©, 4) = 2, and thus
χm(F©) ≤ 4. It is also known [13] that χm(F©) > 2. Moreover, χm(F) > 2 even
when F is the family of unit disks [11]. Therefore, it remains an open problem
whether χm(F©) = 3 or χm(F©) = 4.

We consider a generalization of disks, namely, pseudo-disks. Roughly speaking,
a family of regions is a family of pseudo-disks if they behave like disks in the sense
that the boundaries of every two regions intersect at most twice. We say that a
family of regions is stabbed if their intersection is non-empty, that is, there exist a
point that stabs (i.e., it is contained in) all the regions. We say that a family of
regions is internally stabbed if the intersection of their interiors is non-empty. Our
main result is that coloring with three colors is possible (and sometimes necessary)
for families of stabbed pseudo-disks.

Theorem 1. Let F be a family of pseudo-disks whose intersection is non-empty
and let S be a finite set of points. Then it is possible to color the points in S with
three colors such that any pseudo-disk in F that contains at least two points from
S contains two points of different colors. Moreover, for every integer m there is
a set of points S and a family of pseudo-disks F with a non-empty intersection,
such that for every 2-coloring of the vertices of the hypergraph H(S,F) there is a
hyperedge of size at least m which is monochromatic.

To summarize with our notation, m(F�, 3) = 2 and χm(F�) = 3, where we
denote by F� the families of stabbed pseudo-disks.

It is important to note that the above-mentioned construction from [11] of a
family F of unit disks (or more generally, translates of any region with a smooth
boundary) such that χm(F ) > 2 is not a family of stabbed pseudo-disks (although
it is stabbed by two points, that is, there are two points such that every region
contains at least one of them).

From Theorem 1 it is easy to conclude the following.

Corollary 2. Given a finite set of points S it is possible to color the points
of S with three colors such that any disk that contains the origin and at least two
points from S contains two points with different colors.
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This corollary is already nontrivial for unit disks containing the origin. By a
well-known duality concerning translates of regions (see e.g., [12]) we have:

Corollary 3. It is possible to decompose a sufficiently thick covering of any
region of radius at most one by finitely many unit disks into three parts such that
any two of the three parts cover the whole region.

We present two proofs for the upper bound χm(F�) ≤ 3 of Theorem 1. The
first proof is a direct proof that uses some previous results about the so-called
“shrinkability” of a family of pseudo-disks [5, 16] that rely on a highly nontrivial
sweeping machinery from [18].1 For some of these results we provide new and
simplified proofs. Our second proof of the upper bound χm(F�) ≤ 3 is completely
self-contained and of a more combinatorial flavor. It is based on an equivalence be-
tween hypergraphs defined by stabbed pseudo-disks and ABAB-free hypergraphs.
This equivalence also implies that χm(F�) ≥ 3 following a result from [8].
ABAB-free hypergraphs. Let l ≥ 1 be a number such that 2l is an integer. We
denote by (AB)l the alternating sequence of letters A and B of length 2l. For
example, (AB)1.5 = ABA and (AB)2 = ABAB.

Definition 4 ((AB)l-free hypergraphs).
1. Two subsets A,B of an ordered set of elements form an (AB)l-sequence if

there are 2l elements a1 < b1 < a2 < b2 < . . . such that {a1, a2, . . .} ⊂ ArB
and {b1, b2, . . .} ⊂ B rA.

2. A hypergraph with an ordered vertex set is (AB)l-free if it does not contain
two hyperedges A and B that form an (AB)l-sequence.

3. A hypergraph with an unordered vertex set is (AB)l-free if there is an
order of its vertices such that the hypergraph with this ordered vertex set
is (AB)l-free.

4. The family of all (AB)l-free hypergraphs is denoted by (AB)l-free.

(AB)l-free hypergraphs were introduced in [8], where it was shown that ABA-
free hypergraphs are equivalent to hypergraphs defined by pseudo-halfplanes. It
was also proved in [8] that χm(ABA-free) = 2 (along with further strengthenings)
and that χm(ABAB-free) > 2.

Theorem 5 ([8]). For every m ≥ 2 there exists an ABAB-free m-uniform
hypergraph which is not 2-colorable.

Here we extend these results by showing that m(ABAB-free, 3) = 2 which
implies that χm(ABAB-free) = 3.

Theorem 6. Every ABAB-free hypergraph is proper 3-colorable.

1We would like to note that some of these papers (sometimes implicitly) assume stricter condi-
tions, like no three pseudo-disks should pass through a point. We believe that these conditions
could be removed with some extra care, but that would require to repeat the whole argument.
Therefore, we do not go into details, especially since we also give a self-contained proof for our
main result.
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Theorem 1 then follows from Theorems 1 and 5 and an equivalence between
ABAB-free hypergraphs and hypergraphs defined by stabbed pseudo-disks.

Theorem 7. A hypergraph is ABAB-free if and only if it can be realized by a
family of stabbed pseudo-disks.

As a side question we consider (AB)l-free hypergraphs for l > 2 and show using
a construction similar to the one from [8] that χm(ABABA-free) =∞.

Theorem 8. For every c ≥ 2 and m ≥ 2 there exists an ABABA-free m-
uniform hypergraph which is not c-colorable.

Further related work. As we mentioned before, χm(F�) = 2, where F� denotes
the family of axis-parallel squares. By affine transformations the same result holds
for families of homothets of a fixed parallelogram. It is also known that χm(F∆) =
2, for each family F∆ of homothets of a given triangle [7]. There are also good
estimates of m(F∆, 2), namely, 5 ≤ m(F∆, 2) ≤ 9 [9]. Pálvölgyi and Tóth [15]
proved that for a family F of translates of a given open convex polygon χm(F) =
2. Perhaps the most interesting open problem concerning 2-coloring is whether
the same bound holds for homothets of a given convex polygon. Pálvölgyi and
Keszegh [10] showed that χm ≤ 3 in this case. For further results about translates
and homothets of convex shapes, see e.g., [12, 7, 3, 10] and the webpage [1].

Outline. Due to space limitations most of the proofs are omitted and can be found
in the full version of this paper [2]. In Section 2 we prove that every ABAB-free
hypergraph is 3-colorable. We conclude with some remarks and open problems in
Section 3.

2. Coloring ABAB-free hypergraphs

In this section we prove Theorem 6 which says that every ABAB-free hypergraph
is 3-colorable.

Let H be an ABAB-free hypergraph. A pair of vertices of H is called unsplit-
table if by adding this pair as a hyperedge of size two to H we get an ABAB-free
hypergraph. For a pair of vertices E = {p, q} we say that a hyperedge B splits
this pair if E and B form an EBEB- or BEBE-sequence.

Lemma 9. Every hyperedge of an ABAB-free hypergraph contains a pair of
vertices that is unsplittable.

Proof. Let A be a hyperedge of an ABAB-free hypergraph H. If A is of size
two, then its vertices form an unsplittable pair, for otherwise there would be a
hyperedge B that splits A and this would contradict that H is ABAB-free.

Thus we may assume that A is of size at least 3. Consider a left-to-right order
of the vertices of H by which H is ABAB-free. We write a < b if a and b are two
vertices of H such that a is to the left of b. Denote the vertices of A according to
their order by A = {a1, a2, . . . , ak}. Two such vertices are called consecutive if one
follows the other in this order. We will prove that one of the consecutive pairs of
vertices of A is an unsplittable pair.
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Assume on the contrary that none of the consecutive pairs is unsplittable. A
consecutive pair E = {ai, ai+1} is left-splittable (resp., right-splittable) if there
exists a hyperedge B ∈ H such that they together form a BEBE-sequence
(resp., EBEB-sequence). By our assumption every consecutive pair is either
left-splittable or right-splittable or both. A consecutive pair is called one-sided
splittable (or simply one-sided) if it is not both left-splittable and right-splittable.
Notice that the leftmost consecutive pair C = {a1, a2} cannot be left-splittable. In-
deed, a hyperedge B left-splitting it would also form a BCBC-sequence, which is a
contradiction. Similarly, the rightmost consecutive pair cannot be right-splittable.
Thus the family of one-sided splittable pairs is non-empty.

A

E

BE

ai ai+1i(E)o(E)

/∈ BE /∈ BE

Figure 1. E is an only left-sided pair with witness hyperedge BE .

For each only left-sided pair E = {ai, ai+1} let BE be a hyperedge that together
with E forms a BEEBEE-sequence, see Figure 1. The existence of this sequence
implies that ai, ai+1 ∈ E r BE and that there is a vertex i(E) ∈ BE r A among
the vertices of H between ai and ai+1 (in the left-to-right order of the vertices of
H). The leftmost vertex of BE is denoted by o(E). As E is left-sided and BE is a
witness for that, it follows that o(E) < ai. Also, o(E) ∈ A∩BE since if o(E) /∈ A
then o(E), ai, i(E), ai+1 would form a BEABEA-sequence, a contradiction. Note
that there is no vertex in BE to the left of o(E) by definition and there is no vertex
in BE to the right of ai+1, for otherwise E would also be a right-sided pair.

Similarly, for each only right-sided pair E = {ai, ai+1} take a witness hyperedge
BE with which it forms an EBEEBE-sequence. Thus ai, ai+1 ∈ ArBE and there
is a vertex i(E) ∈ BE r A among the vertices of H between ai and ai+1. In this
case denote by o(E) the rightmost vertex of BE . Therefore, ai+1 < o(E) and, as
before, we have that o(E) ∈ A ∩BE .

Among all one-sided pairs of A let E = {ai, ai+1} be the pair with the least
number of vertices of H between i(E) and o(E). Without loss of generality we
may assume that E is only right-sided.

As o(E) ∈ A and ai+1 < o(E), o(E) = aj+1 for some j > i. Consider the
pair F = {aj , aj+1} (note that aj may coincide with ai+1). We claim that F
cannot be a right-sided pair. Indeed, assume to the contrary that there exists
a hyperedge C and two vertices c1, c2 ∈ C r F such that aj < c1 < aj+1 <
c2 (and therefore aj , c1, aj+1, c2 form an FCFC-sequence), see Figure 2a. Since
o(E) = aj+1 < c2 and o(E) is the rightmost vertex of BE , we also have c2 /∈
BE . Also, i(E) /∈ C, otherwise i(E), aj , c1, aj+1 would form a CACA-sequence,
a contradiction. Similarly, c1 /∈ BE , otherwise ai, i(E), ai+1, o(E) would form an
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A

E

BE

ai ai+1i(E) o(E) = aj+1

/∈ BE

F

aj

C

c1 c2

(a) If F is right-sided
then i(E), c1, o(E),
c2 form a BECBEC-
sequence.

A

E

BE

ai ai+1i(E) o(E) = aj+1

/∈ BE

F

aj

BF

i(F )o(F )

(b) The vertices
o(F ), i(E), i(F ), o(E)

form a BFBEBFBE-
sequence.

Figure 2. Illustrations for the proof of Lemma 9.

ABEABE-sequence. However, then i(E), c1, aj+1, c2 form a BECBEC-sequence,
which is again a contradiction.

Therefore, F is an only left-sided pair and thus o(F ) < aj . See Figure 2b.
Furthermore, o(F ) ≤ ai for otherwise there would be less vertices of H between
o(F ) and i(F ) than there are between o(E) and i(E), contradicting our choice
of E. We have that o(F ) ∈ BF ∩ A for otherwise o(F ), aj , i(F ), aj+1 would be a
BFABFA-sequence. Furthermore, o(F ) /∈ BE since o(F ) ≤ ai and no vertex of
BE is left of ai. Similarly, i(E) 6= BF as otherwise i(E), aj , i(F ), o(E) would form
a BFABFA-sequence. Finally, i(F ) /∈ BE for otherwise ai, i(E), ai+1, i(F ) would
form an ABEABE-sequence.

Thus, the vertices o(F ), i(E), i(F ), o(E) form a BFBEBFBE-sequence, leading
to the final contradiction. �

Proof of Theorem 6. Let H be an ABAB-free hypergraph. We call a hyper-
edge of size at least 3 unhit if it does not contain as a subset a hyperedge of size
2. Starting from H we create a series of hypergraphs as follows. If the current
hypergraph contains an unhit hyperedge, then by Lemma 9 this hyperedge con-
tains an unsplittable pair which we add as a new hyperedge and obtain the next
hypergraph in our series. Since H has a finite number of hyperedges and every
hypergraph has one less unhit hyperedge than its preceding hypergraph, we get a
finite series of hypergraphs. Let H ′ be the last hypergraph in this series.

Let G be the graph that is induced by the hyperedges of H ′ of size two. Note
that every hyperedge of H ′ contains at least one edge of G. Therefore, a proper
coloring of G is a proper coloring of H. The graph G also has the ABAB-free
property. Consider the following drawing of G. Its vertices are represented by
distinct points on a horizontal line according to their ABAB-free order and its
edges are drawn as circular arcs above the line. Since G is ABAB-free its drawing
does not contain crossing edges. Furthermore, this drawing of G is outerplanar.
Since every outerplanar graph is 3-colorable, this completes the proof. �

As mentioned in the introduction, using Theorem 7 this also proves the upper
bound of Theorem 1.
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3. Discussion

In the paper we show that pseudo-disk hypergraphs are equivalent to ABAB-
free hypergraphs, and they are properly 3-colorable. Similar questions can be
studied about dual-ABAB-free hypergraphs as well, which is equivalent to the
so-called cover-decomposition problem for stabbed pseudo-disks. Another version
is to forbid ABABA-sequences cyclically (instead of linearly); such 3-uniform hy-
pergraphs have a nice geometric representation, as convex geometric 3-hypergraphs
without strongly crossing edges, see Suk [19]. It is also a natural question to ask
whether strongly crossing convex geometric (non-uniform) hypergraphs can be
always 3-colored.

We would also like to remark that having VC-dimension at most 2l − 1 is a
weaker assumption than being (AB)l-free. For any c and m there are m-uniform
hypergraphs of VC-dimension 2 that are not c-colorable; the main construction
from both [13] and [14] can be generalized from 2-colors to c-colors as m-uniform
hypergraphs of VC-dimension 2.

An interesting connection to Radon-partitions is the following. Given three
points in R1, they have a unique Radon-partition into two sets, A and B, whose
convex hulls intersect; the points must follow each other in the order A,B,A, so
this cannot happen for ABA-free families. Given four points in R2, there are two
possible Radon-partitions; the first is when three points of A contain the only
point of B inside their convex hull, while the second is when there are two points
in each of A and B such that their connecting segments intersect. Note that none
of these configurations are possible for points from the symmetric difference of
convex pseudo-disks, i.e., if A and B are convex pseudo-disks, then we cannot pick
points from Ar B and B r A that form a Radon-partition. We wonder whether
this has some higher dimensional generalizations, or is just a coincidence.

The most natural problem left open is whether χm(F©) = 3 or χm(F©) = 4.
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