RECONFIGURATION GRAPH FOR VERTEX COLOURINGS OF WEAKLY CHORDAL GRAPHS

C. FEGHALI AND J. FIALA

ABSTRACT. The reconfiguration graph $R_k(G)$ of the k-colourings of a graph G contains as its vertex set the k-colourings of G and two colourings are joined by an edge if they differ in colour on just one vertex of G.

We show that for each $k \geq 3$ there is a k-colourable weakly chordal graph G such that $R_{k+1}(G)$ is disconnected. We also introduce a subclass of k-colourable weakly chordal graphs which we call k-colourable compact graphs and show that for each k-colourable compact graph G on n vertices, $R_{k+1}(G)$ has diameter $O(n^2)$. We show that this class contains all k-colourable co-chordal graphs and when k=3 all 3-colourable $(P_5, \overline{P_5}, C_5)$ -free graphs. We also mention some open problems.

1. Introduction

Let G be a graph, and let k be a non-negative integer. A k-colouring of G is a function $f: V(G) \to \{1, \ldots, k\}$ such that $f(u) \neq f(v)$ whenever $(u, v) \in E(G)$. The reconfiguration graph $R_k(G)$ of the k-colourings of G has as vertex set the set of all k-colourings of G and two vertices of $R_k(G)$ are adjacent if they differ on the colour of exactly one vertex (the change of the colour is the so called *colour switch*). For a positive integer ℓ , the ℓ -colour diameter of a graph G is the diameter of $R_{\ell}(G)$.

In the area of reconfigurations for colourings of graphs, one focus is to determine the complexity of deciding whether two given colourings of a graph can be transformed into one another by a sequence of recolourings (that is, to decide whether there is a path between these two colourings in the reconfiguration graph); see, for example, [8, 7, 5, 3]. Another focus is to determine the diameter of the reconfiguration graph in case it is connected or the diameter of its components if it is disconnected [2, 6, 1, 4, 10]. We refer the reader to [13, 12] for excellent surveys on reconfiguration problems.

In this note, we continue the latter line of study of reconfiguration problems. In Section 3, we shall show that the (k+1)-colour diameter of k-colourable weakly chordal graphs can be infinite. On the positive side, in Section 4, we shall consider

Received June 3, 2019.

 $^{2010\} Mathematics\ Subject\ Classification.\ Primary\ 05C15.$

C. F. supported by the Research Council of Norway via the project CLASSIS,

J. F. supported by the Czech Science Foundation (GA-ČR) project 17-09142S..

two specific subclasses of k-colourable perfect graphs and show that their (k+1)-colour diameter is quadratic in the order of the graph.

We omit all proofs due to space restrictions.

2. Preliminaries

For a graph G = (V, E) and a vertex $u \in V$, let $N_G(u) = \{v : uv \in E\}$. A separator of a graph G = (V, E) is a set $S \subset V$ such that G - S has more connected components than G. If two vertices u and v that belong to the same connected component in G are in two different connected components of G - S, then we say that S separates u and v. A chordless path P_n of length n-1 is the graph with vertices v_1, \ldots, v_n and edges $v_i v_{i+1}$ for $i = 1, \ldots, n-1$. It is a cycle C_n of length n if the edge $v_1 v_n$ is also present.

The complement of G is denoted $\overline{G} = (V, \overline{E})$. It is the graph on the same vertex set as G and there is an edge in G between two vertices u and v if and only if there is no edge between u and v in \overline{G} . A set of vertices in a graph is anticonnected if it induces a graph whose complement is connected. A clique or a complete graph is a graph where every pair of vertices is joined by an edge. The size of a largest clique in a graph G is denoted G. The chromatic number G is a graph G is the least integer G such that G is G-colourable.

A graph G is perfect if $\omega(G') = \chi(G')$ for every (not necessarily proper) subgraph G' of G. A hole in a graph is a cycle of length at least 5 and an antihole is the complement of a hole. A graph is perfect if it is (odd hole, odd antihole)-free [9]. A graph is weakly chordal if it is (hole, antihole)-free. A graph is co-chordal if it is $(\overline{C_4}$, anti-hole)-free. Every weakly chordal graph is perfect. Every co-chordal graph and every $(P_5, \overline{P_5}, C_5)$ -free graph is weakly chordal.

A 2-pair of a graph G is a pair $\{x,y\}$ of nonadjacent distinct vertices of G such that every chordless path from x to y has length 2. We often use the following well-known lemma:

Lemma 2.1 (Hayward et al. [11]). A graph G is weakly chordal graph if and only if every subgraph of G is either a complete graph or it contains a 2-pair.

3. Weakly Chordal Graphs

In this section, we establish the following result.

Theorem 3.1. For each $k \geq 3$ there exists a k-colourable weakly chordal graph G_k such that $R_{k+1}(G_k)$ is disconnected.

The graph G_k is depicted in Figure 1.

In other words, Theorem 3.1 states that for each $k \geq 3$ the (k+1)-colour diameter of k-colourable weakly chordal graphs can be infinite. It is worth mentioning that the case k=2 is already known [2] as the class of 2-colourable weakly chordal graphs is precisely the class of chordal bipartite graphs. It is also worth mentioning that Bonamy, Johnson, Lignos, Patel and Paulusma [2] asked whether the (k+1)-colour diameter of k-colourable perfect graphs is connected. This was

answered negatively in [1] – the counterexample consists of a complete bipartite graph minus a matching. Our Theorem 3.1 thus strengthens this counterexample.

Figure 1. The graph G_k . Each gray area corresponds to a clique.

4. Quadratic diameter

In this section, we introduce a subclass of k-colourable weakly chordal graphs that we call k-colourable compact graphs. We show in Theorem 4.1 that for each k-colourable compact graph G on n vertices the diameter of $R_{k+1}(G)$ is $O(n^2)$. We then show in Lemma 4.1 that k-colourable co-chordal graphs are k-colourable compact and in Lemma 4.2 that 3-colourable $(P_5, \overline{P_5}, C_5)$ -free graphs are 3-colourable compact.

For a 2-pair $\{u,v\}$ of a weakly chordal graph G, let $S(u,v) = N_G(u) \cap N_G(v)$. Note that, by the definition of a 2-pair, S(u,v) is a separator of G that separates u and v. Let C_v denote the component of $G \setminus S(u,v)$ that contains the vertex v.

Definition 4.1. A weakly chordal graph G is said to be *compact* if every subgraph H of G either

- (i) is a complete graph, or
- (ii) contains a 2-pair $\{x,y\}$ such that $N_H(x) \subseteq N_H(y)$, or
- (iii) contains a 2-pair $\{x,y\}$ such that $C_x \cup S(x,y)$ induces a clique on at most three vertices.

Theorem 4.1. Let k be a positive integer, and let G be a k-colourable compact graph on n vertices. Then $R_{k+1}(G)$ has diameter $O(n^2)$.

Lemma 4.1. Every k-colourable co-chordal graph is compact.

Lemma 4.2. Every 3-colourable $(P_5, \overline{P_5}, C_5)$ -free graph is compact.

We are aware the concept of compact graphs does not fit tight with the class of $(P_5, \overline{P_5}, C_5)$ -free graphs, as some of these graphs need not to be k-colourable compact graphs for $k \geq 4$. An example of such graph H for k = 4 is depicted in Figure 2.

Figure 2. A $(P_5, \overline{P_5}, C_5)$ -free 4-colourable graph H that is not compact.

Due to symmetries of the graph H it suffices without loss of generality to consider only the 2-pair $\{x,y\}$ as other 2-pairs could be mapped onto $\{x,y\}$ by an automorphism of H. Observe that this 2-pair violates the conditions of the Definition 4.1 for H to be 4-colourable compact.

Any choice of five vertices from H would contain two vertices joined by a horizontal or a vertical edge, and such edge cannot be extended to an induced P_3 , hence H is also P_5 -free. Also, such choice of five vertices would contain two opposite vertices either of the inner C_4 or from the outer one, like the vertices x and y. As such two vertices form an 2-pair, H contains no C_5 . Finally, H has only two induced C_4 and neither could be completed by any fifth vertex to a $\overline{P_5}$.

5. Concluding remarks

We end this note with two open problems.

Problem 1. For which integer $\ell > k+1$ is the ℓ -colour diameter of k-colourable weakly chordal graphs connected?

Problem 2. Is the (k+1)-colour diameter of k-colourable $(P_5, \overline{P_5}, C_5)$ -free graphs quadratic for each $k \geq 4$?

REFERENCES

 Bonamy M. and Bousquet N., Recoloring graphs via tree decompositions, Eur. J. Comb. 69 (2018), 200–213.

- Bonamy M., Johnson M., Lignos I., Patel V. and Paulusma, D., Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs, J. Comb. Optim. 27 (2014), 132–143.
- 3. Bonsma P. and Cereceda L., Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances, Theor. Comput. Sci. 410 (2009), 5215–5226.
- Bousquet N. and Perarnau G., Fast recoloring of sparse graphs, Eur. J. Comb. 52 (2016), 1–11.
- 5. Brewster R. C., McGuinness S., Moore B. and Noel J. A., A dichotomy theorem for circular colouring reconfiguration, Theor. Comput. Sci. 639 (2016), 1–13.
- Cereceda L., van den Heuvel J. and Johnson M., Connectedness of the graph of vertexcolourings, Discrete Math. 308 (2008), 913–919.
- Cereceda L., van den Heuvel J. and Johnson M., Mixing 3-colourings in bipartite graphs, Eur. J. Comb. 30 (2009), 1593–1606.
- 8. Cereceda L., van den Heuvel J. and Johnson M., Finding paths between 3-colorings, J. Graph Theory 67 (2011), 69–82.
- Chudnovsky M., Robertson N., Seymour P. and Thomas R., The strong perfect graph theorem, Ann. Math. (2) 164 (2006), 51–229.
- Feghali C., Johnson M. and Paulusma D., A reconfigurations analogue of Brooks' theorem and its consequences, J. Graph Theory 83 (2016), 340–358.
- 11. Hayward R., Hoàng C. and Maffray F., Optimizing weakly triangulated graphs, Graphs Comb. 5 (1989), 339–349.
- 12. Nishimura, N., Introduction to reconfiguration, Algorithms 11 (2018), 52.
- 13. van den Heuvel J., *The complexity of change*, in: Surveys in combinatorics 2013. Papers based on the 24th British combinatorial conference, London, UK, 2013, Cambridge University Press, 2013, 127–160.
- C. Feghali, Institutt for informatikk, Universitetet i Bergen, Norway, e-mail: carl.feghali@ii.uib.no
- J. Fiala, Department of Applied Mathematics, Charles University, Prague, Czech Republic, e-mail: fiala@kam.mff.cuni.cz