RECONFIGURATION GRAPH FOR VERTEX COLOURINGS OF WEAKLY CHORDAL GRAPHS

C. FEGHALI and J. FIALA

Abstract

The reconfiguration graph $R_{k}(G)$ of the k-colourings of a graph G contains as its vertex set the k-colourings of G and two colourings are joined by an edge if they differ in colour on just one vertex of G.

We show that for each $k \geq 3$ there is a k-colourable weakly chordal graph G such that $R_{k+1}(G)$ is disconnected. We also introduce a subclass of k-colourable weakly chordal graphs which we call k-colourable compact graphs and show that for each k-colourable compact graph G on n vertices, $R_{k+1}(G)$ has diameter $O\left(n^{2}\right)$. We show that this class contains all k-colourable co-chordal graphs and when $k=3$ all 3-colourable ($P_{5}, \overline{P_{5}}, C_{5}$)-free graphs. We also mention some open problems.

1. Introduction

Let G be a graph, and let k be a non-negative integer. A k-colouring of G is a function $f: V(G) \rightarrow\{1, \ldots, k\}$ such that $f(u) \neq f(v)$ whenever $(u, v) \in E(G)$. The reconfiguration graph $R_{k}(G)$ of the k-colourings of G has as vertex set the set of all k-colourings of G and two vertices of $R_{k}(G)$ are adjacent if they differ on the colour of exactly one vertex (the change of the colour is the so called colour switch). For a positive integer ℓ, the ℓ-colour diameter of a graph G is the diameter of $R_{\ell}(G)$.

In the area of reconfigurations for colourings of graphs, one focus is to determine the complexity of deciding whether two given colourings of a graph can be transformed into one another by a sequence of recolourings (that is, to decide whether there is a path between these two colourings in the reconfiguration graph); see, for example, $[\mathbf{8}, \mathbf{7}, \mathbf{5}, \mathbf{3}]$. Another focus is to determine the diameter of the reconfiguration graph in case it is connected or the diameter of its components if it is disconnected $[\mathbf{2}, \mathbf{6}, \mathbf{1}, \mathbf{4}, \mathbf{1 0}]$. We refer the reader to $[\mathbf{1 3}, \mathbf{1 2}]$ for excellent surveys on reconfiguration problems.

In this note, we continue the latter line of study of reconfiguration problems. In Section 3, we shall show that the $(k+1)$-colour diameter of k-colourable weakly chordal graphs can be infinite. On the positive side, in Section 4, we shall consider

Received June 3, 2019.
2010 Mathematics Subject Classification. Primary 05C15.
C. F. supported by the Research Council of Norway via the project CLASSIS,
J. F. supported by the Czech Science Foundation (GA-ČR) project 17-09142S..
two specific subclasses of k-colourable perfect graphs and show that their $(k+1)$ colour diameter is quadratic in the order of the graph.

We omit all proofs due to space restrictions.

2. Preliminaries

For a graph $G=(V, E)$ and a vertex $u \in V$, let $N_{G}(u)=\{v: u v \in E\}$. A separator of a graph $G=(V, E)$ is a set $S \subset V$ such that $G-S$ has more connected components than G. If two vertices u and v that belong to the same connected component in G are in two different connected components of $G-S$, then we say that S separates u and v. A chordless path P_{n} of length $n-1$ is the graph with vertices v_{1}, \ldots, v_{n} and edges $v_{i} v_{i+1}$ for $i=1, \ldots, n-1$. It is a cycle C_{n} of length n if the edge $v_{1} v_{n}$ is also present.

The complement of G is denoted $\bar{G}=(V, \bar{E})$. It is the graph on the same vertex set as G and there is an edge in G between two vertices u and v if and only if there is no edge between u and v in \bar{G}. A set of vertices in a graph is anticonnected if it induces a graph whose complement is connected. A clique or a complete graph is a graph where every pair of vertices is joined by an edge. The size of a largest clique in a graph G is denoted $\omega(G)$. The chromatic number $\chi(G)$ of a graph G is the least integer k such that G is k-colourable.

A graph G is perfect if $\omega\left(G^{\prime}\right)=\chi\left(G^{\prime}\right)$ for every (not necessarily proper) subgraph G^{\prime} of G. A hole in a graph is a cycle of length at least 5 and an antihole is the complement of a hole. A graph is perfect if it is (odd hole, odd antihole)-free [9]. A graph is weakly chordal if it is (hole, antihole)-free. A graph is co-chordal if it is ($\overline{C_{4}}$, anti-hole)-free. Every weakly chordal graph is perfect. Every co-chordal graph and every $\left(P_{5}, \overline{P_{5}}, C_{5}\right)$-free graph is weakly chordal.

A 2-pair of a graph G is a pair $\{x, y\}$ of nonadjacent distinct vertices of G such that every chordless path from x to y has length 2 . We often use the following well-known lemma:

Lemma 2.1 (Hayward et al. [11]). A graph G is weakly chordal graph if and only if every subgraph of G is either a complete graph or it contains a 2-pair.

3. Weakly chordal graphs

In this section, we establish the following result.
Theorem 3.1. For each $k \geq 3$ there exists a k-colourable weakly chordal graph G_{k} such that $R_{k+1}\left(G_{k}\right)$ is disconnected.

The graph G_{k} is depicted in Figure 1.
In other words, Theorem 3.1 states that for each $k \geq 3$ the $(k+1)$-colour diameter of k-colourable weakly chordal graphs can be infinite. It is worth mentioning that the case $k=2$ is already known [2] as the class of 2-colourable weakly chordal graphs is precisely the class of chordal bipartite graphs. It is also worth mentioning that Bonamy, Johnson, Lignos, Patel and Paulusma [2] asked whether the $(k+1)$-colour diameter of k-colourable perfect graphs is connected. This was

Figure 1. The graph G_{k}. Each gray area corresponds to a clique.
answered negatively in $[\mathbf{1}]$ - the counterexample consists of a complete bipartite graph minus a matching. Our Theorem 3.1 thus strengthens this counterexample.

4. Quadratic diameter

In this section, we introduce a subclass of k-colourable weakly chordal graphs that we call k-colourable compact graphs. We show in Theorem 4.1 that for each k colourable compact graph G on n vertices the diameter of $R_{k+1}(G)$ is $O\left(n^{2}\right)$. We then show in Lemma 4.1 that k-colourable co-chordal graphs are k-colourable compact and in Lemma 4.2 that 3 -colourable ($P_{5}, \overline{P_{5}}, C_{5}$)-free graphs are 3 -colourable compact.

For a 2-pair $\{u, v\}$ of a weakly chordal graph G, let $S(u, v)=N_{G}(u) \cap N_{G}(v)$. Note that, by the definition of a 2-pair, $S(u, v)$ is a separator of G that separates u and v. Let C_{v} denote the component of $G \backslash S(u, v)$ that contains the vertex v.

Definition 4.1. A weakly chordal graph G is said to be compact if every subgraph H of G either
(i) is a complete graph, or
(ii) contains a 2-pair $\{x, y\}$ such that $N_{H}(x) \subseteq N_{H}(y)$, or
(iii) contains a 2-pair $\{x, y\}$ such that $C_{x} \cup S(x, y)$ induces a clique on at most three vertices.

Theorem 4.1. Let k be a positive integer, and let G be a k-colourable compact graph on n vertices. Then $R_{k+1}(G)$ has diameter $O\left(n^{2}\right)$.

Lemma 4.1. Every k-colourable co-chordal graph is compact.
Lemma 4.2. Every 3 -colourable $\left(P_{5}, \overline{P_{5}}, C_{5}\right)$-free graph is compact.

We are aware the concept of compact graphs does not fit tight with the class of ($P_{5}, \overline{P_{5}}, C_{5}$)-free graphs, as some of these graphs need not to be k-colourable compact graphs for $k \geq 4$. An example of such graph H for $k=4$ is depicted in Figure 2.

Figure 2. $\mathrm{A}\left(P_{5}, \overline{P_{5}}, C_{5}\right)$-free 4-colourable graph H that is not compact.
Due to symmetries of the graph H it suffices without loss of generality to consider only the 2-pair $\{x, y\}$ as other 2-pairs could be mapped onto $\{x, y\}$ by an automorphism of H. Observe that this 2-pair violates the conditions of the Definition 4.1 for H to be 4 -colourable compact.

Any choice of five vertices from H would contain two vertices joined by a horizontal or a vertical edge, and such edge cannot be extended to an induced P_{3}, hence H is also P_{5}-free. Also, such choice of five vertices would contain two opposite vertices either of the inner C_{4} or from the outer one, like the vertices x and y. As such two vertices form an 2-pair, H contains no C_{5}. Finally, H has only two induced C_{4} and neither could be completed by any fifth vertex to a $\overline{P_{5}}$.

5. Concluding remarks

We end this note with two open problems.
Problem 1. For which integer $\ell>k+1$ is the ℓ-colour diameter of k-colourable weakly chordal graphs connected?

Problem 2. Is the $(k+1)$-colour diameter of k-colourable ($P_{5}, \overline{P_{5}}, C_{5}$)-free graphs quadratic for each $k \geq 4$?

References

1. Bonamy M. and Bousquet N., Recoloring graphs via tree decompositions, Eur. J. Comb. 69 (2018), 200-213.
2. Bonamy M., Johnson M., Lignos I., Patel V. and Paulusma, D., Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs, J. Comb. Optim. 27 (2014), 132-143.
3. Bonsma P. and Cereceda L., Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances, Theor. Comput. Sci. 410 (2009), 5215-5226.
4. Bousquet N. and Perarnau G., Fast recoloring of sparse graphs, Eur. J. Comb. 52 (2016), 1-11.
5. Brewster R. C., McGuinness S., Moore B. and Noel J. A., A dichotomy theorem for circular colouring reconfiguration, Theor. Comput. Sci. 639 (2016), 1-13.
6. Cereceda L., van den Heuvel J. and Johnson M., Connectedness of the graph of vertexcolourings, Discrete Math. 308 (2008), 913-919.
7. Cereceda L., van den Heuvel J. and Johnson M., Mixing 3-colourings in bipartite graphs, Eur. J. Comb. 30 (2009), 1593-1606.
8. Cereceda L., van den Heuvel J. and Johnson M., Finding paths between 3-colorings, J. Graph Theory 67 (2011), 69-82.
9. Chudnovsky M., Robertson N., Seymour P. and Thomas R., The strong perfect graph theorem, Ann. Math. (2) 164 (2006), 51-229.
10. Feghali C., Johnson M. and Paulusma D., A reconfigurations analogue of Brooks' theorem and its consequences, J. Graph Theory 83 (2016), 340-358.
11. Hayward R., Hoàng C. and Maffray F., Optimizing weakly triangulated graphs, Graphs Comb. 5 (1989), 339-349.
12. Nishimura, N., Introduction to reconfiguration, Algorithms 11 (2018), 52.
13. van den Heuvel J., The complexity of change, in: Surveys in combinatorics 2013. Papers based on the 24th British combinatorial conference, London, UK, 2013, Cambridge University Press, 2013, 127-160.
C. Feghali, Institutt for informatikk, Universitetet i Bergen, Norway,
e-mail: carl.feghali@ii.uib.no
J. Fiala, Department of Applied Mathematics, Charles University, Prague, Czech Republic,
e-mail: fiala@kam.mff.cuni.cz
