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RECONFIGURATION GRAPH FOR VERTEX COLOURINGS

OF WEAKLY CHORDAL GRAPHS

C. FEGHALI and J. FIALA

Abstract. The reconfiguration graph Rk(G) of the k-colourings of a graph G con-

tains as its vertex set the k-colourings of G and two colourings are joined by an
edge if they differ in colour on just one vertex of G.

We show that for each k ≥ 3 there is a k-colourable weakly chordal graph G

such that Rk+1(G) is disconnected. We also introduce a subclass of k-colourable
weakly chordal graphs which we call k-colourable compact graphs and show that

for each k-colourable compact graph G on n vertices, Rk+1(G) has diameter O(n2).

We show that this class contains all k-colourable co-chordal graphs and when k = 3
all 3-colourable (P5, P5, C5)-free graphs. We also mention some open problems.

1. Introduction

Let G be a graph, and let k be a non-negative integer. A k-colouring of G is a
function f : V (G) → {1, . . . , k} such that f(u) 6= f(v) whenever (u, v) ∈ E(G).
The reconfiguration graph Rk(G) of the k-colourings of G has as vertex set the
set of all k-colourings of G and two vertices of Rk(G) are adjacent if they differ on
the colour of exactly one vertex (the change of the colour is the so called colour
switch). For a positive integer `, the `-colour diameter of a graph G is the diameter
of R`(G).

In the area of reconfigurations for colourings of graphs, one focus is to determine
the complexity of deciding whether two given colourings of a graph can be trans-
formed into one another by a sequence of recolourings (that is, to decide whether
there is a path between these two colourings in the reconfiguration graph); see, for
example, [8, 7, 5, 3]. Another focus is to determine the diameter of the recon-
figuration graph in case it is connected or the diameter of its components if it is
disconnected [2, 6, 1, 4, 10]. We refer the reader to [13, 12] for excellent surveys
on reconfiguration problems.

In this note, we continue the latter line of study of reconfiguration problems.
In Section 3, we shall show that the (k+1)-colour diameter of k-colourable weakly
chordal graphs can be infinite. On the positive side, in Section 4, we shall consider
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two specific subclasses of k-colourable perfect graphs and show that their (k+ 1)-
colour diameter is quadratic in the order of the graph.

We omit all proofs due to space restrictions.

2. Preliminaries

For a graph G = (V,E) and a vertex u ∈ V , let NG(u) = {v : uv ∈ E}. A
separator of a graph G = (V,E) is a set S ⊂ V such that G − S has more
connected components than G. If two vertices u and v that belong to the same
connected component in G are in two different connected components of G − S,
then we say that S separates u and v. A chordless path Pn of length n− 1 is the
graph with vertices v1, . . . , vn and edges vivi+1 for i = 1, . . . , n − 1. It is a cycle
Cn of length n if the edge v1vn is also present.

The complement of G is denoted G = (V,E). It is the graph on the same vertex
set as G and there is an edge in G between two vertices u and v if and only if there
is no edge between u and v in G. A set of vertices in a graph is anticonnected if
it induces a graph whose complement is connected. A clique or a complete graph
is a graph where every pair of vertices is joined by an edge. The size of a largest
clique in a graph G is denoted ω(G). The chromatic number χ(G) of a graph G is
the least integer k such that G is k-colourable.

A graph G is perfect if ω(G′) = χ(G′) for every (not necessarily proper) sub-
graph G′ of G. A hole in a graph is a cycle of length at least 5 and an antihole is
the complement of a hole. A graph is perfect if it is (odd hole, odd antihole)-free
[9]. A graph is weakly chordal if it is (hole, antihole)-free. A graph is co-chordal if
it is (C4, anti-hole)-free. Every weakly chordal graph is perfect. Every co-chordal
graph and every (P5, P5, C5)-free graph is weakly chordal.

A 2-pair of a graph G is a pair {x, y} of nonadjacent distinct vertices of G such
that every chordless path from x to y has length 2. We often use the following
well-known lemma:

Lemma 2.1 (Hayward et al. [11]). A graph G is weakly chordal graph if and
only if every subgraph of G is either a complete graph or it contains a 2-pair.

3. Weakly chordal graphs

In this section, we establish the following result.

Theorem 3.1. For each k ≥ 3 there exists a k-colourable weakly chordal graph
Gk such that Rk+1(Gk) is disconnected.

The graph Gk is depicted in Figure 1.
In other words, Theorem 3.1 states that for each k ≥ 3 the (k + 1)-colour

diameter of k-colourable weakly chordal graphs can be infinite. It is worth men-
tioning that the case k = 2 is already known [2] as the class of 2-colourable weakly
chordal graphs is precisely the class of chordal bipartite graphs. It is also worth
mentioning that Bonamy, Johnson, Lignos, Patel and Paulusma [2] asked whether
the (k + 1)-colour diameter of k-colourable perfect graphs is connected. This was
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Figure 1. The graph Gk. Each gray area corresponds to a clique.

answered negatively in [1] – the counterexample consists of a complete bipartite
graph minus a matching. Our Theorem 3.1 thus strengthens this counterexample.

4. Quadratic diameter

In this section, we introduce a subclass of k-colourable weakly chordal graphs that
we call k-colourable compact graphs. We show in Theorem 4.1 that for each k-
colourable compact graph G on n vertices the diameter of Rk+1(G) is O(n2). We
then show in Lemma 4.1 that k-colourable co-chordal graphs are k-colourable com-
pact and in Lemma 4.2 that 3-colourable (P5, P5, C5)-free graphs are 3-colourable
compact.

For a 2-pair {u, v} of a weakly chordal graph G, let S(u, v) = NG(u) ∩NG(v).
Note that, by the definition of a 2-pair, S(u, v) is a separator of G that separates
u and v. Let Cv denote the component of G \ S(u, v) that contains the vertex v.

Definition 4.1. A weakly chordal graph G is said to be compact if every
subgraph H of G either

(i) is a complete graph, or
(ii) contains a 2-pair {x, y} such that NH(x) ⊆ NH(y), or
(iii) contains a 2-pair {x, y} such that Cx ∪ S(x, y) induces a clique on at most

three vertices.

Theorem 4.1. Let k be a positive integer, and let G be a k-colourable compact
graph on n vertices. Then Rk+1(G) has diameter O(n2).

Lemma 4.1. Every k-colourable co-chordal graph is compact.

Lemma 4.2. Every 3-colourable (P5, P5, C5)-free graph is compact.
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We are aware the concept of compact graphs does not fit tight with the class
of (P5, P5, C5)-free graphs, as some of these graphs need not to be k-colourable
compact graphs for k ≥ 4. An example of such graph H for k = 4 is depicted in
Figure 2.

x y

Figure 2. A (P5, P5, C5)-free 4-colourable graph H that is not compact.

Due to symmetries of the graph H it suffices without loss of generality to con-
sider only the 2-pair {x, y} as other 2-pairs could be mapped onto {x, y} by an
automorphism of H. Observe that this 2-pair violates the conditions of the Defi-
nition 4.1 for H to be 4-colourable compact.

Any choice of five vertices from H would contain two vertices joined by a hor-
izontal or a vertical edge, and such edge cannot be extended to an induced P3,
hence H is also P5-free. Also, such choice of five vertices would contain two oppo-
site vertices either of the inner C4 or from the outer one, like the vertices x and y.
As such two vertices form an 2-pair, H contains no C5. Finally, H has only two
induced C4 and neither could be completed by any fifth vertex to a P5.

5. Concluding remarks

We end this note with two open problems.

Problem 1. For which integer ` > k+1 is the `-colour diameter of k-colourable
weakly chordal graphs connected?

Problem 2. Is the (k + 1)-colour diameter of k-colourable (P5, P5, C5)-free
graphs quadratic for each k ≥ 4?
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