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A GRAPHON PERSPECTIVE

FOR FRACTIONAL ISOMORPHISM

J. GREBÍK and I. ROCHA

Abstract. Fractional isomorphism of graphs plays an important role in practical

applications of graph isomorphism test by means of the color refinement algorithm.
We introduce a suitable generalization to the space of graphons in terms of Markov

opertors on a Hilbert space, provide characterizations in terms of a push-forward of
the graphon to a quotient space and also in terms of measurable partitions of the

underlying space. Our proofs use a weak version of the mean ergodic theorem, and

correspondences between objects such as Markov projections, sub-σ-algebras, mea-
surable decompositions, etc. That also provides an alternative proof for the char-

acterizations of fractional isomorphism of graphs without the use of Birkhoff–von

Neumann Theorem.

1. Introduction

A graphon is a symmetric measurable function W : X ×X → [0, 1], where X is a
standard probability space. Graphons are the main object of study in the theory
of dense graph limits introduced in [7, 2]. By using a suitable metric, the so-
called cut distance, graphons arise as a limit object of sequences of graphs. The
fundamental result in the theory states that the space of graphons is compact
with respect to the cut distance, thus providing the compactification on the space
of graphs. Given two graphs F and G, we denote by t(F,G) the homomorphism
density of F into G. Homomorphism densities in graphs extend to homomorphism
densities in graphons, which we denote by t(F,W ) the homomorphism density of
F into W . Remarkably, the authors of [7, 2] prove the equivalence between two
types of convergence: a sequence of graphs Gn converges to W in the cut distance
if and only if for every finite graph F it holds that t(F,Gn)→ t(F,W ).

In the fundaments of the theory of graphons there are distinct notions of
isomorphisms. For instance, we say that two graphons U and W are isomor-
phic if there is a measure preserving measurable bijection ϕ : X → X such that
U(ϕ(x), ϕ(y)) = W (x, y) for almost all points x and y, i.e., W can be regarded
as a permutation of U . For the discrete counterpart – isomorphism of graphs –
permutations play the role of measure preserving bijections, thus providing a suit-
able generalization in the graphon space. However, a more important notion of
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isomorphism in this theory is a weaker definition of isomorphism: two graphons
U and W are said to be weakly isomorphic if and only if t(F,U) = t(F,W ) for
every finite graph F . At this point it is worthwhile to state two characterizations
of weak isomorphism that are essential in the theory. In the first, two graphons
U and W are weakly isomorphic if and only if their cut distance is zero. In the
second, two graphons U and W are weakly isomorphic if and only if there ex-
ist measure preserving maps (not necessarly invertible) ϕ,ψ : X → X such that
U(ϕ(x), ϕ(y)) = W (ψ(x), ψ(y)), i.e., U and W share the same pull-back. It follows
that the limit object of a sequence of graphs is unique up to weak isomorphisms.

In this paper we introduce the notion fractional isomorphism of graphons, which
is the suitable counterpart for fractional isomorphism of graphs. To this end, we
need to work with special quotients of a given graphon, i.e., a graphon defined on
a quotient space of the original graphon. We call this special quotient a fraction
of the graphon. The reason for the name will be clear in the next section when
we define a fractional condition that must be fulfilled. For now, it is important
to understand that the fraction of a graphon can be considered as an inverse
notion of the pull-back. For example, when U is a pull-back of W , then it follows
from our definition of fraction that W is a fraction of U . However we note that
in general two graphons V and W need not be weakly isomorphic to share the
same fraction. We will see that many difficulties appear when trying to extend
the definitions and proving meaningful characterizations. Before we discuss that
in the next section, let us try to convince the reader of the importance of this
concept for the isomorphism problem at the same time that we give some basics
of fractional isomorphism of graphs.

Recall that a doubly stochastic matrix S is a square matrix with nonnegative
entries such that each row and each column sum up to one, i.e., S ≥ 0 and
S 1 = ST 1 = 1. For example, permutation matrices are doubly stochastic. Let
G andH be graphs andA andB its corresponding adjacency matrices. We say that
G and H and fractionally isomorphic if there exists a doubly stochastic matrix S
such that AS = SB. Notice that G and H are isomorphic if and only if there exists
a permutation matrix P such that AP = PB. Finding such permutation matrix is
a notorious difficult problem in computer science. It is not known if this problem
can be solved in polynomial time nor to be NP-complete. Nevertheless, many
relaxations of the isomorphism problem have been investigated, one in particular
has theoretical and practical interest; the fractional isomorphism decision problem
which can be resolved in polynomial time.

The notion of fractional isomorphism have different characterizations that are
pertinent for our investigation and we shall state them now before we attempt
to come up with a proper definition for graphons. For a graph G = (V,E),
let d(v, S) be the degree of a vertex v in a subset of vertices S. Equivalently,
d(v, S) = |N(v) ∩ S|. A partition {C1, C2, . . . , Cs} of V is called equitable if and
only if for all u, v ∈ Ci, we have d(u,Cj) = d(v, Cj) for all i and j. That is to
say that each induced subgraph G[Ci] must be regular and each of the bipartite
graphs G[Ci, Cj ] must be biregular. That also defines a trivial equivalence relation
between vertices, which turns out to be the correct approach when we generalize
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this kind of partition to the underlying space where the graphon is defined. The
relevant characterizations for the purposes of this article are collected bellow.

Theorem 1.1 ([10],[9]). Let G and H be graphs. The following statements are
equivalent.

1. G and H are fractionally isomorphic.
2. G and H have some common equitable partition.
3. G and H have a common coarsest equitable partition.

Equivalences (1) and (3) were proved by Tinhofer in [10]. Equivalence (2) was
proved in [9] by Ramana, Scheinerman, and Ullman. Perhaps the most important
characterization of fractional isomorphism is due to its practical applications to
graph isomorphism test. This application comes from color refinement which is
a simple and efficient heuristic to test whether two graphs are isomorphic. The
algorithm computes a coloring of the vertices of two graphs based on its iterated
degree sequences and compare its colorings. Whenever they are different, we say
that color refinement distinguishes the graphs. Whenever they are the same, we
do not know whether or not they are isomorphic. Regardless, in [1] Babai, Erdős,
and Selkow showed that color refinement distinguishes almost all non-isomorphic
graphs, and in practice this algorithm performs well. Other advanced graph iso-
morphism algorithms and almost all practical isomorphism softwares uses color
refinement underneath. This heuristic goes beyond isomorphism testing and is
also useful in a number of other problems. (See [6] for further reading) Notice-
able, and most relevant for our investigation, is that color refinement does not
distinguish G and H if and only if G and H are fractionally isomorphic, which
was proved by Tinhofer [10, 11]. That suggests the importance of this notion.

2. Fractional isomorphism of graphons

In this section we define fractional isomorphism of graphons which we show to be
characterized in terms of measurable decompositions of the underlying space X. In
what follows we define graphons on a standard Borel space. We remark that people
usually work with standard probability spaces but since every standard probability
space is a completion of some standard Borel space with a probability measure we
do not lose anything. This is similar to the fact that in this theory working
on any probability space is essentially the same as using a standard probability
space, which was showed in [3] by Borgs, Chayes and Lovász. They provide a
simple procedure to transform a graphon on an arbitrary probability space into
a graphon on a standard probability space. The reason we use a standard Borel
spaces is to be able to use the Measure Disintegration Theorem which we believe
describes better the connection with finite graphs.

An operator T : L2 (X,µ)→ L2 (Y, ν) is said to be doubly stochastic if Tf ≥ 0
whenever f ≥ 0, T1X = 1Y , and T ∗1Y = 1X , where T ∗ is its adjoint operator
T ∗ : L2 (Y, ν) → L2 (X,µ). Doubly stochastic operators are also called in the
literature by the name Markov operators. Our reference for the theory of Markov
operators is [5]. Notice that this is a generalization of doubly stochastic matrices in
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the context of Hilbert spaces. We consider the graphon operator TW : L2 (X,λ)→
L2 (X,λ) defined by TW (f) (x) =

∫
X
f (y)W (x, y) dλ. It is well-known that TW is

a self-adjoint Hilbert-Schmidt operator, which enjoys many nice properties. The
graphon operator TW plays the role of the adjacency matrix as in the discrete case.

Definition 2.1 (Fractional isomorphism of graphons). Let W and U be
graphons on spaces X and Y , respectively. We say that U and W are fractionally
isomorphic if there exists a doubly stochastic operator S : L2 (X,µ) → L2 (Y, ν)
such that S ◦ TW = TU ◦ S.

Our goal now is to provide the graphon counterpart of Theorem 1.1. However,
the notion of equitable partition is not straightforward. A reasonable definition
should reflect the properties from the finite case. For example, if G = (V,E)
is a finite graph and η is a equivalence relation on V that induces an equitable
partition {C1, C2, . . . , Cs}, then every pair v, w ∈ Ci must have the same degree,
i.e., d(v, V ) = d(w, V ). The corresponding notion of degree in a graphon is de-
fined for each point x ∈ X by d(x) =

∫
X
W (x, y)dλ. Consider the example where

X = [0, 1] with the Lebesgue measure and define the graphon W (x, y) = xy. Then
d(x) 6= d(y) for all different x, y ∈ X. For this example, the correct generalization
of equitable partition must be given by a equivalence relation η with the property
that for any y, x ∈ [0, 1] with xηy it holds that x = y. Therefore, there are un-
countably many equivalence classes, all of them with measure zero. That suggests
we need to be more careful than in the discrete case to provide a proper definition,
which in turn creates some extra difficulties for the proofs.

Let (X,B, µ) be a standard Borel space with a probability measure. An equiv-
alence relation η on X is said to be a measurable partition if there is a standard
Borel space (Y, C) and a measurable map fη : X → Y such that xηy if and only
if fη (x) = fη (y) and f(X) ∈ C. Similarly, every surjective measurable func-
tion f : X → Y induces a measurable partition ηf . There is a natural equiva-
lence relation on the set of all measurable partitions. Equivalently, this concept
can be described by relatively complete (with respect to µ) sub-σ-algebra of B.
Namely, for every measurable partition η we assign the sub-σ-algebra Bη ⊂ B by
Bη = {A ∈ B : for every x, y ∈ X if xηy and x ∈ A then y ∈ A}. Assigning back
a measurable partition to a relatively complete sub-σ-algebra is possible in our
situation because we work with a standard Borel spaces. The reason why we
introduce both concepts is that the measurable partition allow us to apply the
Measure Disintegration Theorem and generalize the local condition from equi-
table partition from finite graphs, while the sub-σ-algebra allows us to correlate
η with conditional expectation E (·|Bη) and easily define globally the quotient of
a given graphon with respect to a measurable partition. We note that since both
concepts are equivalent there is a translation between both approaches which we
describe in the next definitions.

It is a standard fact that whenever (X,B) is a standard Borel space, then the
space of all probability measures, that we denote as P(X), carries naturally stan-
dard Borel structure. Recall that for every measurable partition η, the Measure
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Disintegration Theorem gives a measurable function Λη : X → P (X) that disin-
tegrates µ with respect to η. We denote an equivalence class of x ∈ X as x/η.

Definition 2.2 (Fractional partition). Let W be a graphon on X. We say that
a measurable partition η is a fractional partition of W if there is a µ-conull Borel
set C ⊆ X such that for every a, b ∈ C where aηb we have∫

X

W (a, z) dΛη (y) (z) =

∫
X

W (b, z) dΛη (y) (z)

for µ-almost every y ∈ X, or equivalently, E (W (a, ·) |Bη) = E (W (b, ·) |Bη), where
the equality is µ-almost everywhere.

A fractional partition can be interpreted as a generalization of an equitable
partition. In the previous example, where W (x, y) = xy, the correct fractional
partition η is such that for each point x ∈ [0, 1] it holds {x} = x/η. The dis-
integration of µ is given by the Dirac measure Λη (x) = δx for each x ∈ [0, 1].
Therefore, for all y, a ∈ X it holds

∫
X
W (a, z) dΛη (y) (z) = W (a, y).

Given a graphon W on X and a measurable partition η it is natural to create a
quotient graphon Wη : X/η ×X/η → [0, 1] by the push-forward of E (W |Bη × Bη)
to the quotient space X/η × X/η (the space of equivalence classes of η). Note
that (X/η,Bη, µ/η) is a standard Borel space, due to our definition of measurable
partition. The concept of quotient was used before to show for example that
every graphon is weakly isomorphic to a twin-free graphon. Recall that two points
x, x′ ∈ X are twins if and only if W (x, y) = W (x′, y) for almost all y ∈ X. That
defines a equivalence relation on X. We remark that this equivalence relation
satisfies the notion of fractional partition and the corresponding quotient is the
twin-free graphon (see [8]). Next, we define the core object of this paper.

Definition 2.3 (Fraction of a graphon). Let η be a fractional partition of W .
Then a fraction of W is the graphon Wη : X/η × X/η → [0, 1] defined by the
push-forward of E (W |Bη × Bη) to the quotient space X/η, or equivalently,

Wη (x/η, y/η) =

∫
X×X

W (r, s) dΛη (x) (r)× Λη (y) (s) .

Note that if η = {X} the corresponding graphon Wη is the constant graphon
on one-point probability space with the value

∫
X×XW (x, y) dµ × µ. This is a

fraction of W exactly when almost all points have the same degree. This clearly
shows that there are graphons that are not weakly isomorphic but share the same
fraction. Another example that we mentioned in the introduction is when U is a
pull-back of W . Then one can easily verify that W is a fraction of U .

Rather surprisingly, for every graphon W on X there is a maximal fractional
partition ηmax in the sense that ηmax is a partition of any fractional partition η of
W . That we show in the following result, which is one of the fundaments in our
investigation.

Theorem 2.4. Let W be a graphon on X. Then there is a fractional partition
ηmax of W with the property that for every fractional partition η of W there is a
fractional partition θ of Wη such that (Wη)θ = Wηmax

.
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Comparing to the discrete case, this result is analogue to the fact that any
equitable partition has a coarsest equitable partition. To further understand this
concept, we provide the following result that characterizes fractional partitions.
Notice that whenever η is a measurable partition of X, then L2 (X/η, µ/η) can be
naturally viewed as a subspace of L2 (X,µ).

Theorem 2.5. Let W be a graphon on X. The following are equivalent.

1. η is a fractional partition of W .
2. TW is invariant on L2 (X/η, µ/η).
3. There is an orthonormal basis of L2 (X/η, µ/η) that consists of eigenfunc-

tions of TW � L2 (X/η, µ/η).

We are ready to state our main result that generalizes the conditions from
Theorem 1.1.

Theorem 2.6. Let W and U be graphons on spaces X and Y , respectively.
Then the following are equivalent

1. W and U are fractionally isomorphic.
2. there area fractional partitions η of W and θ of U such that Wη and Uθ are

isomorphic.
3. the maximal fractional partitions ηmax of W and θmax of U are such that
Wηmax and Uθmax are isomorphic.

Let us briefly mention that the proof of this theorem has a very different ap-
proach than in the discrete case. First, the proof for graphs given in [9] relies
on the Birkhoff–von Neumann theorem, which states that any doubly stochastic
matrix can be written as a convex combination of permutation matrices. This
type of decomposition is not possible for a general doubly stochastic operator in a
Hilbert space. To overcome this issue, we provide a proof that uses a weak version
of the mean ergodic theorem and correspondences between objects such as Markov
projections, sub-σ-algebras, measurable decompositions, etc. Thus, our result also
provides an alternative proof for Theorem 1.1 without the use Birkhoff–von Neu-
mann theorem which seems to be unknown.

3. Further directions

There are two further relevant conditions that characterizes fractional isomorphism
of graphs. The first is the iterated degree sequence of graphs, providing the relation
with the color refinement algorithm, and the second is a condition involving density
of trees. The latter condition appeared in [4], where the authors showed that two
graphs G and H are fractionally isomorphic if and only if for every T it holds
t(T,G) = t(T,H). It is expected that a similar condition holds for graphons.
However, the graphon case is not fully understood and we expect to report on
this matter soon. As a final remark on the current investigation, to provide this
type of tree density condition for graphons we first need to understand a similar
condition involving the iterated degree sequence in the context of graphon. To this
end, we define a distributions on iterated degree distributions which allow us to
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produce a fraction of a graphon, and further show the equivalence to the existence
of isomorphic fractions.
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