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THEORY OF LIMITS OF SEQUENCES OF LATIN SQUARES

F. GARBE, R. HANCOCK, J. HLADKÝ and M. SHARIFZADEH

Abstract. We build up a limit theory for sequences of Latin squares, which paral-

lels the theory of limits of dense graph sequences. Our limit objects, which we call
Latinons, are certain two variable functions whose values are probability distribu-

tions on [0, 1]. Left-convergence is defined using densities of k × k subpatterns in
finite Latin squares, which extends to Latinons. We also provide counterparts to

the cut distance, and prove a counting lemma, and an inverse counting lemma.

In this extended abstract, we describe a theory of limits of sequences of Latin
squares. Recall that a Latin square of order n is a matrix L ∈ Nn×n such that
each of the numbers 1, . . . , n appears precisely once in every row and column. We
emphasise that our rows, columns, and symbols in the entries are ordered (by the
natural order on N) – for example, we can talk about one column being to the left
of another one. One could also consider an “unordered” version of Latin squares,
which would lead to an entirely different limit theory.

Our theory parallels similar theories for limits of sequences of dense graphs and
of permutations. It is worthwhile to recall the framework underlying limits of
sequences of discrete structures in general.

1. There is a notion of density for the given class of finite discrete structures.
2. There is a class of limit objects. The notion of density above is extended

to these limit objects.
3. The densities induce a totally bounded metric on the finite structures and

the limit objects. Convergence with respect to this topology is called left-
convergence.

4. A key result is a compactness theorem: For every sequence of finite struc-
tures in the class, there exists an accumulation point (with respect to left-
convergence) in the space of limit objects.
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5. The space of limit objects is minimal, that is, every limit object can be
approximated (in the sense of left-convergence) by a finite object.

6. There exists another metric, defined in more global terms, which generates
the same topology as the left-convergence topology. This metric is called
the cut-distance.

For graphs, this framework leads to densities t(F, ·) and graphons, the compact-
ness theorem (4) was famously proven by Lovász and Szegedy in [4], and the most
streamlined approach for (5) is via so-called W -random graphs. We will assume
some knowledge of this theory here, referring the reader to [3].

Restricting a Latin square L to any row, we get a bijection between the columns
and the symbols, i.e., a permutation on {1, . . . , n}. Similarly, we get a permutation
on {1, . . . , n} by restricting to any column. Last, fixing any symbol and restricting
only on entries of L with that symbol leads to a permutation between the rows and
the columns, which is yet another way of obtaining a permutation on {1, . . . , n}.
So, before working out a theory of limits of Latin squares, it is instructive to
look one level lower on limits of permutations, which has been worked out in [1].
Similarly to our remark in the first paragraph, the theory from [1] is for “ordered”
permutations, that is the bijection on the set {1, . . . , n} inherits the natural linear
order from N. Given a permutation π ∈ Sn, the density of a permutation σ ∈ Sk
(for k ≤ n) is the probability that having taken a uniformly random k-tuple
{v1 < . . . < vk} ⊂ {1, . . . , n} we have that σ(i) < σ(j) if and only if π(vi) < π(vj)
for each i, j ∈ {1, . . . , k}. Limits of permutations, called permutons, turn out to
be probability measures on [0, 1]2 with uniform marginals (on both coordinates).
The density of a permutation σ ∈ Sk in a permuton P , denoted by t(σ, P ), can
be defined in the following way, referred to as P -sampling. Sample independently
points p1, . . . , pk ∈ [0, 1]2 according to P . Now, reorder the points so that their
x-coordinates are increasing, and call the reordered sequence q1, . . . , qk (due to
the uniform marginals condition, it happens with probability zero that two points
would have the same x-coordinate). Then t(σ, P ) is the probability that for every
i, j ∈ {1, . . . , k} we have that σ(i) < σ(j) if and only if the y-coordinate of qi is
less than that of qj . Let us also quickly comment on (4) and (5) in this setting.
There is a natural way to transform a finite permutation into a measure on [0, 1]2

with uniform marginals. The accumulation points in (4) are exactly accumulation
points of the sequence of these transformed permutations with respect to the weak
topology (which is well-known to be compact). To address (5), one can show that
P -sampling yields with high probability (as k → ∞) a permutation with similar
subpermutation densities.

1. Densities in Latin squares and some examples

An example of a Latin square of order n which easily comes to mind is defined
by Ln(i, j) := i + j mod n. A natural first guess at how a limit object of the
sequence (Ln) could look like would hence be the map W : [0, 1]2 → [0, 1] defined
by W (x, y) := x + y mod 1. However, the following examples show that such a
notion cannot capture the richness of the limit object.
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Example 1.1. For convenience of this example, here n × n squares will have
values in [0, n−1] and we assume that n is divisible by 2. We define a Latin square
Hn, and we give a randomised construction for a square Pn by

Hn(i, j) :=

{
i+ j mod n if i+ j ≡ 0 mod 2,

−i− j mod n if i+ j ≡ 1 mod 2;

Pn(i, j) :=

{
i+ j mod n with probability 1/2,

−i− j mod n with probability 1/2.

First, note that it is indeed possible to construct a Latin square Pn. We can
choose a pseudo-random red-blue-colouring of the n× n grid and insert i+ j mod
n if the entry is red and −i− j mod n if the entry is blue. This way we can almost
completely fill the grid to obtain a partial Latin square. By a result of Keevash [2]
this partial Latin square can then be completed to a Latin square. We omit the
details here, but a similar process is described later in the abstract. Now, (Pn)
exhibits the problem that limn→∞ Pn(xn, yn)/n does not exist for x, y ∈ [0, 1].
We expect the two accumulation points to be x+ y mod 1 and −x− y mod 1. A
solution to this problem is to let the limit object be a distribution-valued graphon.
A candidate for the limit of (Pn) is therefore P (x, y) := dirac(x + y mod 1)/2 +
dirac(−x− y mod 1)/2. However, the sequence (Hn) shows that such a definition
is still not general enough. In the limit and for values (x, y) ∈ [0, 1]2 we cannot
distinguish the odd from the even case. Since in a square [(x − ε)n, (x + ε)n] ×
[(y − ε)n, (y + ε)n] half of the time the value Hn(i, j) will be i + j mod n and
half of the time −i − j mod n, one could guess that Hn has the same limit as
Pn. This is however not correct, as the densities of substructures in (Hn) and
(Pn) converge to different limits. To continue the discussion we therefore need
to define the notion of density. Let R(k, `) be the set of all k × ` matrices such
that every x ∈ [k`] appears as an entry precisely once. One natural generalisation
of densities in permutations t(σ, ·) to Latin squares is the following; for a matrix
A = (ai,j) ∈ R(k, `) and a Latin square L, define t(A,L) to be the probability
that the restriction of L to a random k × ` submatrix B = (bi,j) (induced by
a random k-set of rows and `-set of columns) has the property that, for every
i ∈ [k] and j ∈ [`], the entry bi,j has the same position in the ordered k`-tuple of
the entries of B as the entry ai,j in the ordered k`-tuple of the entries of A – in
such a case we say that A and B represent the same pattern. We now say that a
sequence of Latin squares (Ln) (left-)converges, if the densities (t(A,Ln)) converge
for all A ∈ R(k, `) and k, ` ∈ N. One can now check that for the 2× 3 pattern A
defined by A1,1 := 1, A1,2 := 2, A1,3 := 3, A2,1 := 4, A2,2 := 5, A2,3 := 6 we have
that limn→∞ t(A,Hn) > limn→∞ t(A,Pn). We therefore need to be able to encode
“local information” in the limit object, which suggests to consider a limit object
like H : Γ2 → P([0, 1]), where Γ = [0, 1] × {odd, even}. This leads to a different
treatment of columns and rows compared to the values. This is justified by the
fact that we can find a sequence of Latin squares (Ln) which is convergent, such
that the sequence of Latin squares (L′n) formed by column-value swaps (that is,
for all x, y, z we have that if L(x, y) = z, then L′(x, z) = y) does not converge.
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2. The theory of Latinons

2.1. Defining Latinons

We now want to precisely define the limit of a sequence of Latin squares of order
n, as n→∞. The first step to do this is to rescale by 1

n , that is, to transplant the
rows, the columns and the symbols into the interval [0, 1]. So, the most naive guess
would be that a limit of Latin squares is a function from [0, 1]2 to [0, 1] with some
sort of “uniform marginal property” (which would reflect that each symbol appears
exactly once in each row and each column). In the previous section, however, we
saw that several additional properties need to be recorded in the limit.

(i) There must be a way of recording not only global row and column position,
but also local behaviour.

(ii) Limits of entries will be probability distributions on [0, 1] rather than just
values in [0, 1].

We are now ready to define our limit objects, which we call Latinons. Let P([0, 1])
be the set of all Borel probability measures on [0, 1], and let λ⊗d be the Lebesgue
measure on Rd. Let (Γ, γ) be a fixed atomless separable probability space.

Definition 2.1 (Latinons). Suppose that f : Γ→ [0, 1] is a measure preserving
map and K : Γ2 → P([0, 1]) is a Borel map. We say that the pair (K, f) is a
Latinon if for almost every s ∈ Γ and for every measurable set C ⊂ [0, 1] we have

(1)

∫
t∈Γ

K (s, t) (C)dγ = λ⊗1(C) =

∫
t∈Γ

K (t, s) (C)dγ .

That is, in Definition 2.1 the rows are indexed by Γ, and the global position of
a row s ∈ Γ corresponds to f(s). The possible non-injectivity of f allows us to
accommodate information about the local behaviour. Note that the formulae in
Definition 2.1 are counterparts to the uniform marginals property of permutons.

2.2. Densities in Latinons and limits of examples from Section 1

Given A = (ai,j) ∈ R(k, `) and a Latinon (K, f) we want to generalise the notion
of density from Latin squares to Latinons. We can introduce a strict partial order
<f on Γ by defining x <f y if and only if f(x) < f(y). Then let t(A, (K, f))
be the probability that, given a random selection of x = (x1, . . . , xk) ∈ Γk<f

and

y = (y1, . . . , y`) ∈ Γ`<f
, and sampling for each (i, j) with i ∈ [k], j ∈ [`] a real-

valued bi,j from the distribution K(xi, yj), the matrix (bi,j)i∈[k],j∈[`] represents the
same pattern asA. For the sequences from Example 1.1 we can now define Latinons
such that the densities of the Latin squares converge towards the densities of the
corresponding Latinon. For the sequence (Hn), we set Γ := [0, 1]×{odd, even}, γ
is the uniform measure on Γ, and the functions f and K are defined by

f(x, a) := x , K((x, a), (y, b)) :=

{
x+ y mod 1 if a = b,

−x− y mod 1 if a 6= b.
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For the sequence (Pn), we set Γ := [0, 1], γ is the uniform measure on Γ, f is the
identity, and K is defined by

K(x, y) :=

{
x+ y mod 1 with probability 1/2,

−x− y mod 1 with probability 1/2.

2.3. Our results

Our two main results are compactness of the space of Latinons, and approxima-
bility of a Latinon by finite Latin squares. As is usual, such results are needed for
any complete limit theory of a certain discrete structure.

Theorem 2.2. For each sequence (Ln)n of finite Latin squares of growing or-
ders there exists a subsequence (Lki)i and a Latinon (K, f) such that (Lki)i left-
converges to (K, f).

Theorem 2.3. For each Latinon (K, f) there exists a sequence (Ln)n of finite
Latin squares of growing orders that left-converges to (K, f).

We also introduce an analogue of a cut-distance for Latinons. For this we first
define a natural generalisation of the cut-norm to Latinons. To define the distance
we then allow an additional reordering of the columns and rows when comparing
the measures, however since our columns and rows are ordered by <f such a
reordering must only be small or otherwise increase the distance. Let S[0,1] be the
set of all measure-preserving bijections on the unit interval.

Definition 2.4. Let L1 = (W, f) and L2 = (U, g) be Latinons. We define

δL(L1, L2) := inf
ϕ,ψ∈S[0,1]

(∥∥Of −Og◦ϕ∥∥
�

+
∥∥Of −Og◦ψ∥∥

�
+
∥∥W − Uϕ,ψ∥∥

D

)
where O : Γ2 → [0, 1] is the bigraphon such that O(x, y) =

{
1, x < y

0, otherwise
and

∥∥W − Uϕ,ψ∥∥
D

:= sup
R,C,V⊆[0,1]
V interval

∫
x∈R

∫
y∈C

W (x, y)(V )− U(ϕ(x), ψ(y))(V )dy dx.

We show counting and inverse counting lemmas which demonstrate that the
topologies induced by left-convergence and the cut-distance are equivalent. The
proofs of both statements involve reducing the problem to “compression of bi-
graphons”, a notion which will be explained in a later section. The proof of the
inverse counting lemma relies on a sampling lemma which states that sampling a
pattern from a Latinon is close to the Latinon in cut-distance.

Lemma 2.5. Let k, ` ∈ N. Then there exists a constant ck,` such that for
every d ∈ N, Latinons L1, L2 and A ∈ R(k, `) we have |t(A,L1) − t(A,L2)| <
ck,`/2

d + ck,`2
dk` · δL(L1, L2).

Lemma 2.6. For every δ > 0 there exist k ∈ N and ε > 0 such that for every
two Latinons L1 and L2 with δL(L1, L2) > δ there exists A ∈ R(k, k) such that
t(A,L1)− t(A,L2) > ε.
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3. Approaching Latinons via compressions of bigraphons

The key for proving Theorems 2.2, 2.5, and 2.6 is to represent a Latin square or
a Latinon using what we call a “compression of bigraphons”. This allows us to
access tools available in the theory of graphons. To illustrate the method, let us
sketch a proof of Theorem 2.2. Suppose that L is a Latin square of order n. Then
we associate to L the following compression

L = (O,W 1,1,W 1,2,W 2,1, . . . ,W 2,4, . . . ,W d,1, . . . ,W d,2d

, . . . ) ,

where O and W ’s are bigraphons from Γ2 to {0, 1}, defined as follows.

• Partition Γ arbitrarily into n sets Γ1, . . . ,Γn of measure 1
n each (so, L will

depend on this partition).
• Define O to be 1 on each set Γi × Γj with i < j, and 0 on the rest.
• Given d ∈ N and k ∈ [2d], define W d,k to be 1 on each set Γi × Γj with

L(i,j)
n ∈ [k−1

2d ,
k
2d ) (the right end of this interval is taken closed if k = 2d),

and 0 on the rest.

A crucial property of our construction is that W d,k’s are nested in the sense that
for each d ∈ N and for each k ∈ [2d] we have W d,k = W d+1,2k−1 +W d+1,2k.

Now, given a sequence of Latin squares L1, L2, . . . in Theorem 2.2, we con-
sider a sequence of associated compressions L1 = (O1,W

1,1
1 ,W 1,2

1 , . . . ),L2 =

(O2,W
1,1
2 ,W 1,2

2 , . . . ), . . .. On this sequence, we apply an extension of the Lovász–
Szegedy compactness theorem for tuples of (di)graphons, stated in Theorem 3.1
below. Let W0 be the space of measurable, not necessarily symmetric, functions
W : Γ2 → [0, 1] together with the cut metric

d�(U,W ) := sup
S,T⊆Γ

∣∣∣∣∫
S×T

(U −W )(s, t)dsdt

∣∣∣∣ .
We can define a metric δN� on WN

0 by setting

δN�((Un)n∈N, (Wn)n∈N) := inf
ϕ : [0,1]→[0,1]

∞∑
n=1

1
2n d�(Un,W

ϕ
n ) ,

where Wϕ(x, y) = W (ϕ(x), ϕ(y)) and the infimum is taken over all invertible mea-
sure preserving maps. Note that this is not the same as

∑∞
n=1

1
2n δ�(Un,Wn) and

therefore compactness of δN� does not follow immediately by combining Tychonoff’s
theorem with the standard Lovász–Szegedy compactness theorem.

Theorem 3.1. The space (WN
0 , δ

N
�) is (sequentially) compact.

So, using Theorem 3.1, we can find a δN�-limit point L∗ = (O∗,W
1,1
∗ ,W 1,2

∗ , . . . )
of some subsequence Lk1 ,Lk2 , . . .. Crucially, note that the nestedness property

transfers to (W d,k
∗ )d,k. Let us show how to interpret L∗ as the Latinon (K, f).

Firstly, as O∗ arises as a cut-distance limit of full upper-triangular matrices, it
must be weakly isomorphic to the upper-triangular bigraphon. In particular, the
function f : Γ → [0, 1], f(s) :=

∫
t
O∗(s, t) dt is measure preserving. Let us now

show how to construct K(s, t) at a given (s, t) ∈ Γ2. We want that for each d ∈ N
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and for each k ∈ [2d], the K(s, t)-measure of the interval [k−1
2d ,

k
2d ) (again, with a

closed interval for k = 2d) equals to W d,k
∗ (s, t). Indeed, thanks to the nestedness

property above, Carathéodory’s extension theorem guarantees that such a measure
exists (and is unique). It can now be verified that (K, f) satisfies Definition 2.1,
and that it is indeed a left-limit of (Lki)i.

4. Approximating Latinons via finite Latin squares

Let us briefly sketch the proof of Theorem 2.3. Our proof depends on the recent
breakthrough results of Keevash [2] on combinatorial designs. As a matter of fact,
Keevash used a very similar approach to obtain lower bounds on generalisations
of Latin squares, so-called higher-dimensional permutations. So, suppose that our
task is to approximate a given graphon (K, f) by a finite Latin square. Firstly,
using some basic approximation properties of Borel measures, we can find a par-
tition [0, 1] = J1 t . . . t Jm into short intervals, and for each i ∈ [m] a partition
f−1(Ji) = Γi,1 t . . . t Γi,pi and for each i, j ∈ [m] and q ∈ [pi], r ∈ [pj ], measures
µi,q,j,r ∈ P([0, 1]) which are constant multiples of the Lebesgue measure on each
step J1, . . . , Jm such that for most of (s, t) ∈ Γi,q × Γj,r we have that K(s, t) is
similar (in a suitable metric) to µi,q,j,r.

Figure 1. Different weight (depicted by thickness) on triangles from a fixed

pair of vertices in R5,2 × C7,1 corresponds to intensities of µ5,2,7,1 around

scaled-down labels on V . Choosing a different pair in R5,2×C7,1 would does
not change the weights.

We say that a collection of edge-disjoint triangles in a given graph forms a
triangle decomposition if each edge is covered by some triangle from that collection.
The importance of this concept in this work stems from the fact that each Latin
square of order n can be encoded as a triangle-decomposition of the tripartite
graph Kn,n,n, where one part (say R) represents row indices, another one column
indices (say C), and the last one values in entries (say V ); so each of these parts
is labelled by 1, . . . , n. We now put a certain weighting on these triangles, as
follows. Partition R as

⊔m
i=1

⊔pi
q=1Ri,q so that the ordering reflects the positions
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of
⊔m
i=1

⊔pi
q=1 Γi,q, and similarly partition C =

⊔m
i=1

⊔pi
q=1 Ci,q. Partition V =⊔m

i=1 Vi so that the ordering reflects the positions of
⊔m
i=1 Ji. Now, assume T is a

triangle, say between Ri,q, Cj,r and V` which we assume to be labelled by labels
around αn. Assign T the weight corresponding to the Radon-Nikodym derivative
of µi,q,j,r around α. See Figure 1.

Now, run the usual Rödl nibble for producing an approximate triangle decom-
position of the Kn,n,n. That is, we start randomly extracting small batches of
triangles in rounds, deleting the edges in the extracted triangles. The only dif-
ference is that this time, each triangle is selected with probability proportional to
its weight. Quasirandomness conditions needed for the Rödl nibble can be con-
trolled in the usual way. We end up with a very sparse subgraph of Kn,n,n, which
corresponds to a partial Latin square. Now, Keevash’s machinery can be used to
complete this partial Latin square into a complete Latin square. It can be shown
that with high probability this Latin square is close to (K, f) in densities.
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J. Hladký, Institute of Mathematics of the Czech Academy of Sciences, Prague, Czech Republic,
e-mail : hladky@math.cas.cz

M. Sharifzadeh, Mathematics Institute and DIMAP, University of Warwick, Coventry, UK,

e-mail : m.sharifzadeh@warwick.ac.uk


