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ALMOST SPANNING UNIVERSALITY IN RANDOM GRAPHS

O. PARCZYK

Abstract. A graph G is called universal for a family of graphs F if it contains
every element F ∈ F as a subgraph. We prove for ∆ ≥ 3 and ε > 0 that G(n, p) is

a.a.s. universal for the family of all graphs on (1−ε)n vertices with maximum degree

∆ provided that p = ω(n−1/(∆−1)). This improves on previously known results

by Conlon, Ferber, Nenadov, and Škorić [Almost-spanning universality in random

graphs, Random Structures Algorithms 50 (2017), 380–393] and is asymptotically
optimal for ∆ = 3.

1. Introduction

Since the early work of Erdős and Rényi [11] the embedding of large structures is
one of the central topics of random graph theory. After perfect matchings [11] and
cycles [1, 20, 24], more recent results deal with factors [18] and general bounded
degree graphs [2, 8, 9, 10, 12, 13, 14, 15, 19]. The most studied model is
the binomial random graph G(n, p), which is the model of n-vertex graphs, where
each edge is present with probability p. Properties, such as subgraph containment,
exhibit a threshold behaviour [5], which is an abrupt change for a relative small
perturbation of the parameters. Formally, we call a function p̂ : N → [0, 1] a
threshold for a property P if

lim
n→∞

P
[
G(n, p) ∈ P

]
=

{
0 if p = o(p̂)

1 if p = ω(p̂).

We say that G(n, p) satisfies the property P asymptotically almost surely (a.a.s.)
if limn→∞ P

[
G(n, p) ∈ P

]
= 1

For a matching or cycle on at least (1 − ε)n vertices the threshold is 1/n for
a fixed ε > 0, which follows from Chernoff’s inequality and [1], respectively. At
this point the expected number of perfect matchings and Hamilton cycles also
gets large, but as long as p = o(log n/n) there are a.a.s. isolated vertices. It is
enough to surpass this obstacle and the threshold for both is log n/n [11, 20, 24].
For a K∆+1-factor, which are n/(∆ + 1) disjoint copies of K∆+1, the threshold

is (n−1 log1/∆)2/(∆+1), which follows from a more general result by Johannson,
Kahn, and Vu [18]. As above, the log-term is needed to ensure that every vertex
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is contained in a copy of K∆+1 and for an almost spanning K∆+1-factor n−2/(∆+1)

already gives the threshold, which can be proved with a standard application of
Janson’s inequality. Note that a K2-factor is a perfect matching.

Turning to more general graphs, let F(n,∆) be the family of all graphs on
n vertices with maximum degree ∆. We call a graph G universal for a family
of graphs F if it contains any graph F ∈ F as a subgraph. Note that for large
families F there is a difference between universality and the containment of a given
F ∈ F in G(n, p). First, Alon and Fredi [2] showed that for an integer ∆ and
F ∈ F(n,∆) a.a.s. G(n, p) contains a copy of F provided that p = ω(log n/n)1/∆.
The corresponding universality result was obtained by Dellamonica, Kohayakawa,
Rödl, and Ruciński [9, 10] for ∆ ≥ 3 and by Kim and Lee [19] for ∆ = 2. At
this probability any set of ∆ vertices contains many common neighbours, which is
crucial for the proof of the aforementioned results.

This natural barrier was surpassed by Conlon, Ferber, Nenadov, and kori [8],
who proved for an ε > 0 that p = ω(n−1/(∆−1) log5 n) gives a.a.s. F((1− ε)n,∆)-
universality in G(n, p). Their strategy is to remove cycles until the left-over can be
embedded using a result for degenerate graphs by Ferber, Nenadov, and Peter [15].
For F(n,∆)-universality the best result is by Ferber and Nenadov [14] and needs
p = ω(n−1 log3 n)1/(∆−1/2). They only removed a special matching and then used
the method of robust absorption, introduced by Montgomery [22], to make the
embedding spanning. Ferber, Kronenberg, and Luh [12] obtained an optimal result

for ∆ = 2 showing that n−2/3 log1/3 n is the threshold for F(n, 2)-universality in
G(n, p). We improve upon the almost spanning result, where our focus is the case
∆ = 3.

Theorem 1.1. Let ∆ ≥ 3 be an integer, ε > 0, and p = ω(n−1/(∆−1)). Then
a.a.s. G(n, p) is F((1− ε)n,∆)-universal.

This is optimal for ∆ = 3, because with p = o(n−1/2) there a.a.s. is no almost
spanning K4-factor in G(n, p). For ∆ = 2 it was already known that n−2/3 gives
the threshold [8]. In general it is believed that the (almost spanning) K∆+1-factor
is the hardest graph to embed and, therefore, n−2/(∆+1) should be the threshold

for F((1− ε)n,∆)-universality and (n−1 log1/∆)2/(∆+1) the threshold for F(n,∆)-
universality. It would be very interesting to extend Theorem 1.1 to the spanning
case using robust absorbers as employed in [14].

Our approach uses techniques of Conlon, Ferber, Nenadov, and Škorić [8] and
Ferber and Nenadov [14]. A crucial ingredient of the proof is our decomposition
of a graph F with maximum degree ∆ (see Lemma 2.1). We will remove induced
subgraphs in which the number of edges is exactly one larger than the number of
vertices and prove that afterwards the graph can be sequentially dismantled. For
the embedding in opposite order we further develop an embedding strategy of Fer-
ber and Nenadov [14] (see Lemma 2.5 and 2.6), which, in comparison to previously
known techniques, has the advantage that we do not need extra log-terms. This
allows us to extend the embedding as long as there is a linear number of vertices
left. To ensure universality, we work in a pseudorandom environment that satis-
fies the properties of G(n, p) that we need (see Definition 2.2 and Proposition 2.3).
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Throughout we will use standard graph theoretic notation following [16, 17]. In
the next section we give more details of the proof.

2. Almost spanning embedding

We will now explain in more detail the ingredients for our embedding. We denote
by a chordal cycle any connected graph with two vertices of degree 3 and all other
of degree 2. These graphs are either two cycles joined by a path or one cycle with
a path connecting two vertices. The length of a chordal cycle is the number of its
vertices.

Lemma 2.1. For any integer ∆ ≥ 3 and F ∈ F(n,∆) there exist integers
t1 ≤ t2 ≤ t and a sequence of graphs F0 ⊆ F1 ⊆ · · · ⊆ Ft = F such that F0 is the
empty graph and the following holds:

(i) If 0 < i ≤ t1, then Fi r Fi−1 is a Kk with 2 ≤ k ≤ ∆ + 1, which is isolated
in Fi−1.

(ii) If t1 < i ≤ t2, then Fi r Fi−1 is a single vertex or an edge, where each
vertex has at most one neighbour in Fi−1.

(iii) If t2 < i ≤ t, then Fi r Fi−1 is a chordal cycle of length at most 16 log n.

This decomposition is inspired by a lemma from Conlon, Ferber, Nenadov, and
Škorić [8] for finding a cycle in the log n neighbourhood of a vertex and by a
lemma from Krivelevich [21], which implies that any tree either has many leaves
or many bare paths. For embedding all graphs with this decomposition we define
the following pseudorandom properties.

Definition 2.2. For ∆ ≥ 3, η > 0, and p ∈ (0, 1) we say that an n-vertex
graph G is an (n, p, η,∆)-graph if there is a partition U = {U0, . . . , U∆+1} of V (G)
with |Ui| = ηn for 1 ≤ i ≤ ∆ + 1 such that the following holds:

(A1) For any V ⊆ V (G) with |V | ≥ ηn there is a copy of K∆+1 in G[V ].
(A2) For any L ⊆ V (G) of size |L| = `, U ∈ U , and U ′ ⊆ U a subset of size

|U ′| ≥ max{η|U |, |U | − `n1/2/ log n} there exists vertices u ∈ L and v ∈ U ′
such that vu is an edge in G.

(A3) For any L ⊆ V (G)2 a set of disjoint tuples of size |L| = `, U ∈ U , and
U ′ ⊆ U a subset of size |U ′| ≥ max{η|U |, |U | − `n1/2/ log n} there exists a
pair (u1, u2) ∈ L and and an edge v1v2 ∈ G[U ′] such that v1u1 and v2u2

are edges in G.
(A4) For any chordal cycle F on vertices v1, . . . , vk with 4 ≤ k ≤ 16 log n, L ⊆

V (G)(∆−2)k−2 a set of disjoint ((∆− 2)k− 2)-tuples (u1, . . . , u(∆−2)k−2) of
size |L| = `, U ∈ U , and U ′ ⊆ U a subset of size |U ′| ≥ max{η|U |, |U | −
`n1/(∆−1)/ log n} there exists an (u1, . . . , u(∆−2)k−2) ∈ L and a copy of F in
G with each vi mapped to ṽi ∈ U ′ for 1 ≤ i ≤ k such that ṽiu(∆−2)(i−1)+j

is an edge in G for 1 ≤ j ≤ ∆− 2 when 1 ≤ i ≤ k− 2, 1 ≤ j ≤ ∆− 3 when
i = k − 1, and 0 ≤ j ≤ ∆− 4 when i = k.

Property (A1) allows us us to embed cliques into prescribed vertexsets. The
others, (A2)–(A4), enable us to embed one graph with connections from a large
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enough family of graphs. For example, for any family L of n(∆−2)/(∆−1) log n many
vertices in G and any set U ′ ⊆ U0 of size |U ′| ≥ ηn by (A2) one vertex from U ′

is incident to a vertex from L. The special sets U1, . . . , U∆+1 will be used, when
we already embedded a lot into U0 and L is smaller. We denote the family of
(n, p, η,∆)-graphs by G(n, p, η,∆) and show that G(n, p) a.a.s. is in G(n, p, η,∆).

Proposition 2.3. For ∆ ≥ 3, 1/(∆ + 2) ≥ η > 0, and p = ω(n−1/(∆−1)) the
random graph G(n, p) a.a.s. is in G(n, p, η,∆).

Finding a copy of K∆+1 in any linear sized set can easily be proved using Jan-
son’s inequality (see [17, Theorem 2.18]), which implies (A1). Property (A2)
follows by a simple Chernoff bound (see [17, Theorem 2.8]). For (A3) and (A4)
we can again use Janson’s inequality and similar calculations to Conlon, Ferber,
Nenadov, and kori [8]. It then remains to prove the following deterministic em-
bedding statement.

Theorem 2.4. For ∆ ≥ 3, ε > 0, ε/(∆ + 2) ≥ η > 0, and p = ω(n−1/(∆−1))
let G ∈ G(n, p, η,∆). Then G is F((1− ε)n,∆)-universal.

Together with Proposition 2.3 this immediately implies Theorem 1.1. This will
in turn be implied by our decomposition result, Lemma 2.1, together with (A1)
for embedding initial Kk’s with 2 ≤ k ≤ ∆ + 1 and the following two lemmas,
which use (A2), (A3), and (A4) to embed the rest.

Lemma 2.5. For ∆ ≥ 3, ε > 0, ε/(∆ + 2) ≥ η > 0, and p = ω(n−1/2) let
G ∈ G(n, p, η,∆) with U = {U0, . . . , U∆+1} and G′ = G − (U1 ∪ · · · ∪ U∆−1).
Further, let F be any graph on at most (1− ε)n vertices and S ⊂ V (F ) such that
there exists a sequence F [S] = F0 ⊆ · · · ⊆ Ft = F such that for 0 < i ≤ t the graph
Fi r Fi−1 is a single vertex or edge, where each vertex has at most one neighbour
in Fi−1. Then any embedding of F0 into G[U0] can be extended to an embedding
of F into G′.

Lemma 2.6. For ∆ ≥ 3, ε > 0, ε/(∆ + 2) ≥ η > 0, and p = ω(n−1/(∆−1)) let
G ∈ G(n, p, η,∆) with U = {U0, . . . , U∆+1}. Further, let F ∈ F((1 − ε)n,∆) and
S ⊂ V (F ) such that there exists a sequence F [S] = F0 ⊆ · · · ⊆ Ft = F such that
for 0 < i ≤ t the graph FirFi−1 is a chordal cycle of length at most 16 log n. Then
any embedding of F0 into G[U0 ∪ U∆ ∪ U∆+1] can be extended to an embedding of
F into G.

To prove these lemmas we use a strategy of Ferber and Nenadov [14]. The
main idea is to embed the new vertices always into the Ui with i as small as
possible. Then with (A2)–(A4) we can show that most vertices are embedded
into U0, less and less are embedded into the Ui for larger i, and, most importantly,
the embedding is successful for all vertices. With this at hand it is easy to prove
Theorem 2.4.

Proof of Theorem 2.4. Let ∆ ≥ 3, ε > 0, ε/(∆+2) ≥ η > 0, p = ω(n−1/(∆−1)),
and G ∈ G(n, p, η,∆). Then for any F ∈ F((1 − ε)n,∆) we apply Lemma 2.1.
We repeatedly use (A1) to obtain an embedding of Ft1 into G[U0]. Then with
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Lemma 2.5 we extend this to an embedding of Ft2 into G avoiding U1, . . . , U∆−1.
Finally, we can use Lemma 2.6 to finish the embedding of F . �

3. Concluding remarks

Almost spanning embeddings into random graphs are very helpful for proving re-
sults in the model of randomly perturbed graphs. This model is at the intersection
of random and extremal graph theory and was introduced by Bohmann, Frieze, and
Martin [4]. For an α > 0 it is the union of any graph Gα with minimum degree αn
and G(n, p). In Gα∪G(n, p) we do not need extra log-terms to guarantee a certain
minimum degree and p = ω(1/n) suffices a.a.s. for a Hamilton cycle [4]. Similarly,
for the K∆+1-factor [3] and also for embedding one F ∈ F(n,∆) [7] the probabil-
ity p = ω(n1/(2∆+1)) a.a.s. is enough in Gα ∪G(n, p). In general we expect that in
Gα∪G(n, p) the threshold for the almost spanning results in G(n, p) are sufficient,
while most of them are optimal because Gα can be Kαn,(1−α)n. For universality
only trees [6] and F(n, 2) [23] were considered using the approach from [7]. Fol-
lowing [6, 23] we can use our approach for almost spanning universality in G(n, p)
to obtain the following. For every α > 0 we have with p = ω(n−1/(∆−1)) that
Gα ∪ G(n, p) is F(n,∆)-universal. This is optimal for ∆ = 3, while for larger ∆
the conjecture is n2/(∆+1).
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