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THE KUPERBERG CONJECTURE FOR TRANSLATES

OF CONVEX BODIES

R. PROSANOV

Abstract. We prove that if a convex body C admits a dense translative packing,
then it admits an economical translative covering and vice versa. This answers

positively to the question of W. Kuperberg in the case of translative arrangements.

1. Definitions and statements of results

Let C be a d-dimensional convex body in Rd, i.e. a compact convex set with
nonempty interior. An arrangement C = {C1, C2, . . .} is a countable collection of
congruent copies of C in Rd. An arrangement is called packing if no two distinct
copies in C have an interior point in common. An arrangement is called covering
if Rd =

⋃
i Ci.

Define upper and lower densities of an arrangement

den(C) = lim sup
r→∞

∑
Ci∈C vol

(
Ci ∩Bd(r)

)
vol(Bd(r))

,

den(C) = lim inf
r→∞

∑
Ci∈C vol

(
Ci ∩Bd(r)

)
vol(Bd(r))

,

where Bd(r) is the Euclidean ball of radius r centered at the origin.
The packing density of C is

(1) δ(C) = sup
C is a packing

den(C).

Similarly, the covering density of C is

(2) θ(C) = inf
C is a covering

den(C).

Note that these densities are reached. It is also clear that δ(C) ≤ 1 and
θ(C) ≥ 1. Then using averaging and compactness arguments one can show

δ(C) = 1 ⇐⇒ θ(C) = 1 ⇐⇒ C is a tile.
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This was proved by Schmidt [13], one can also look in [5, p. 805].
It is a natural question to ask if this property is stable. In other words, if a body

C cannot be packed densely, does it mean that it cannot cover Rd economically?
This was initially conjectured by W. Kuperberg [1, Chapter 1.10, Conjecture 1]:

Conjecture 1.1. Let d ≥ 2 be fixed. Then for any ε > 0 there exists δ > 0
with the property that for every d-dimensional convex body C

(1) θ(C) ≥ 1 + ε implies δ(C) ≤ 1− δ,
(2) δ(C) ≤ 1− ε implies θ(C) ≥ 1 + δ.

In fact, G. Fejes-Tóth and W. Kuperberg ([4], [10]) asked to investigate the
links between packing and covering densities in more details. Let Ωd ⊂ R2 be
the set of points (x, y) such that there exists a d-dimensional convex body C with
the property δ(C) = x, θ(C) = y. It is a natural question to describe this set
explicitly. Unfortunately, even in the case d = 2 this problem seems to be very
hard. For instance, it is not known whether this set is closed or simply-connected.
It is conjectured that Ωd is convex.

There are some restrictions that are frequently imposed on the arrangements
C under consideration. It is interesting to restrict our attention to the case of
translative or lattice arrangements. An arrangement C = {C1, C2, . . .} is called
translative if all Ci are translates of the body C. It is called a lattice arrangement
if in addition the translation vectors form a lattice Λ.

For a convex body C we define its translative packing and covering densities
δT (C) and θT (C) by considering the supremum or the infimum in the expressions
(1) or (2) respectively with the additional condition that the arrangements are
translative. Similarly, we denote lattice packing and covering densities by δL(C)
and θL(C).

Our main result provides a link between translative packing and covering den-
sities in all dimensions:

Theorem 1.2. Let d ≥ 2 and C be a d-dimensional convex body.

(1a) Let either 0 < ε ≤ 1
dd+1 or C in addition be centrally symmetric. If for

the translative packing density we have δT (C) > 1− ε, then the translative
covering density of C satisfies

θT (C) <
(

1 + ε
1

d+1

)d+1

.

(1b) Let 1
dd+1 < ε < 1 and C be not centrally symmetric. If for the translative

packing density we have δT (C) > 1−ε, then the translative covering density
of C satisfies

θT (C) <
(
1 + εdd

)(
1 +

1

d

)d

.

(2) Let 0 < ε < 1. If for the translative covering density we have θT (C) < 1+ε,
then the translative packing density of C satisfies

δT (C) >
(

1− ε
1

d+1

)d+1

.
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In particular, this establishes Conjecture 1.1 in the case of translative densities.
Indeed, in Conjecture 1.1 it is enough to consider only sufficiently small values

of ε. If ε ≤
(
1 + 1

d

)d+1 − 1 (to satisfy the condition in part (1a) of Theorem 1.2),
then one can take

δ =
(

(1 + ε)
1

d+1 − 1
)d+1

and obtain (1) in Conjecture 1.1 from (1a) in Theorem 1.2. If ε < 1, then take

δ =
(

1− (1− ε)
1

d+1

)d+1

and get (2) in Conjecture 1.1 from (2) in Theorem 1.2.

2. Comparison with previously known results

The only known case of Conjecture 1.1 was proven by D. Ismailescu for d = 2,
with the additional conditions that C is centrally symmetric and arrangements are
lattice or translative. More precisely, in [7] he showed that under these assump-
tions

(3) 1− δL(C) ≤ θL(C)− 1 ≤ 1.25
√

1− δL(C).

For centrally symmetric planar bodies it was already proven by L. Fejes-Tóth [6]
that δL(C) = δT (C) and by C. Dowker [2] that θL(C) = θT (C). Thereby, this
implies Conjecture 1.1 in these cases. The proof of (3) is based on the approxi-
mation of C by centrally symmetric octagons and cannot be extended to higher
dimensions. We also remark that it is widely believed that in higher dimensions
δL(C) 6= δT (C) and θL(C) 6= θT (C).

Several other results linking together packing and covering densities of convex
bodies are given in [8], [9] and [15]. All of them are known to hold only in
dimensions 2 or 3.

It is interesting to compare under which condition on δT (C), Theorem 1.2 gives
us a better bound on θT (C) than a general best known bound for covering densities.
The similar comparison can be provided with general bounds on packing densities.
For the sake of brevity, we give the conclusion only in the case when C is centrally
symmetric.

The best known bound for θT (C) is due to G. Fejes-Tóth [3]:

(4) θT (C) ≤ d ln d+ d ln ln d+ d+ o(d).

In the centrally symmetric case Theorem 1.2 gives us a better bound than (4)
provided that

1− δT (C) <

(
ln(d ln d+ d ln ln d+ d)

d+ 1

)d+1

.

For the packing densities of centrally symmetric bodies the best result was
obtained by W. Schmidt [14]:

(5) δT (C) ≥ δL(C) ≥ d ln
√

2

2d
− o(1),
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Theorem 1.2 gives us a better bound than (5) if

θT (C)− 1 <

(
1

2
− ln(d ln 2)

d+ 1

)d+1

.

3. Sketch of proof

We call a translative arrangement C of translates of C to be periodic if the trans-
lation vectors form a set of the form Λ +X, where Λ is a d-dimensional lattice in
Rd and X is a finite point set. The following theorem of Rogers [12, Theorems
1.7 and 1.9] allows us in the framework of our problem to reduce the study of
translative arrangements to the study of periodic ones:

Theorem 3.1. For a convex body C in the definition of its translative packing
density we can take the supremum over only periodic arrangements. The same
holds for its translative covering density.

Now we sketch the proof of the first part of Theorem 1.2. For the details we
refer the reader to the extended paper [11].

Consider a periodic packing C of the form C + Λ + X of the density den(C) >
δT (C) − ε. We proceed to the torus T = Rd/Λ and abusing the notation we still
denote the images of C and X under the projection map Rd → T by C and X.
Then we take α: 0 < α < 1 and consider the arrangement (1 + α)C + X on T .
If it is not a covering of T , then we choose a point y1 ∈ T , which is not covered.
It is easy to see that the interior of −αC + y1 does not intersect the interiors of
C + X. We take y′1 ∈ T such that C + y′1 covers −αC + y1. If C is centrally
symmetric, then we can set y′1 = y1, in the other case such a point exists by a
result of Minkowski and Radon under the additional assumption that α ≤ 1

d (see
e.g. [16, Corollary 1.4.2]).

Now we consider X1 = X ∪ {y′1} and repeat our operation obtaining points
y2, y

′
2 ∈ T and the set X2 = X1 ∪ {y′2}. We continue this process until for some l

we obtain that (1 + α)C +Xl covers T .
Then we get a bound

θT (C) = θT ((1 + α)C) ≤ den ((1 + α)C +Xl + Λ)

=
|Xl| (1 + α)

d
vol (C)

vol(T )
= (1 + α)

d

(
den(C) +

lvol (C)

vol(T )

)
.

It turns out that the described process of choosing each point y′i allows us to

give a bound on the last summand lvol(C)
vol(T ) in terms of α and the density of C. We

substitute this bound in the last inequality and optimize the resulting bound on
θT (C) over all α in order to obtain the first part of Theorem 1.2.

The proof of the second part of Theorem 1.2 follows a similar scheme. Choose a
lattice Λ and finite point set X such that the arrangement C+Λ+X is a covering
close to the optimal and project everything on the torus T = Rd/Λ. If 0 < α < 1
and (1− α)C +X is not a packing on T , then we are able to find a point y1 ∈ T
such that αC + y1 belongs to the intersection of at least two sets C + x1, C + x′1
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for x1, x
′
1 ∈ T . Then we define X1 = X\{x′1}. As before, we iterate our process

until we obtain that (1−α)C +Xl is a packing on T . In this case it is not always
true that (1 − α)C + Λ + Xl is a packing in Rd, but this can be easily overcome
under an additional assumption on the choice of Λ. Thus, we obtain

δT (C) = δT ((1− α)C) ≥ den ((1− α)C +Xl + Λ)

=
|Xl| (1− α)

d
vol (C)

vol(T )
= (1− α)

d

(
den(C)− lvol (C)

vol(T )

)
.

Then the second part of Theorem 1.2 is obtained by bounding lvol(C)
vol(T ) and op-

timizing the last inequality in terms of α.
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