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ASYMPTOTICALLY GOOD LOCAL LIST EDGE COLOURINGS

M. BONAMY, M. DELCOURT, R. LANG and L. POSTLE

Abstract. We study list edge colourings under local conditions. Our main result

is an analogue of Kahn’s theorem in this setting. More precisely, we show that, for

a simple graph G with sufficiently large maximum degree ∆ and minimum degree
δ ≥ ln25 ∆, the following holds. Suppose that lists of colours L(e) are assigned to

the edges of G, such that, for each edge e = uv,

|L(e)| ≥ (1 + o(1)) ·max {deg(u), deg(v)} .
Then there is an L-edge-colouring of G. We also provide extensions of this result

for hypergraphs and correspondence colourings, a generalization of list colouring.

1. Introduction

Consider a simple graph G = (V,E) and an assignment of lists of colours L(e) ⊆ N
to the edges of G. We say that a mapping of colours to the edges of G is an L-
colouring, if every edge receives a colour from its list and no two adjacent edges
receive the same colour. A classic problem in edge colouring, introduced inde-
pendently by Erdős, Rubin, and Taylor [5]; and Vizing [14], is to determine lower
bounds for |L(e)| that guarantee that there is an L-colouring for all lists L(e)
satisfying these conditions.

A great deal of research in this area has focused on global bounds, i.e. where
all lists are bounded from below by the same parameter. More precisely, the
list edge chromatic number, denoted by ch′(G), is defined as the least k such
that min |L(e)| ≥ k guarantees an L-colouring. Some simple bounds are read-
ily obtained. We denote the maximum degree of G by ∆. Then the condition
mine∈E |L(e)| ≥ 2∆ − 1 yields the existence of an L-colouring, as the edges can
be coloured greedily from the lists. Similarly, mine∈E |L(e)| ≥ ∆ is a trivial
necessary condition for the existence of an L-colouring. We can extend this to
mine∈E |L(e)| ≥ χ′(G) by taking all lists to be the same, where χ′(G) denotes
the chromatic index of G. Interestingly, we do not know of any graph for which
the last bound does not hold with equality. The famous List (Edge) Colouring
Conjecture states that this is not a coincidence.

Conjecture 1.1. Every graph G satisfies ch′(G) = χ′(G).
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According to Jensen and Toft [8], the conjecture was suggested independently
by Vizing, Albertson, Collins, Erdős, Tucker, and Gupta in the late seventies. It
is known to be true for certain families of graphs, such as bipartite graphs by
Galvin (Galvin’s theorem) [6] and complete graphs of even and prime order by
Häggvist and Jannsen [7] and Schauz [12], respectively. Moreover, Kahn showed
that Conjecture 1.1 holds asymptotically, i.e. for all ε > 0 and every graph G with
sufficiently large maximum degree ∆ satisfies ch′(G) ≤ (1 + ε)∆ [9].

Here, we study list edge colourings under local conditions, i.e. where |L(e)| is
lower bounded by a function that takes into account the local structure around
e. For vertex colourings, such local notions were considered by Erdős, Rubin, and
Taylor [5] and have been recently studied in terms of local clique sizes by Bonamy,
Kelly, Nelson, and Postle [1] and for triangle-free graphs by Davies, de Joannis de
Verclos, Kang, and Pirot [3]. Observe that we can refine the above bounds on
|L(e)| for e = uv, showing that |L(e)| ≤ deg(u)+deg(v)−1 is a sufficient condition
for the existence of an L-colouring, while |L(e)| ≥ deg(e) := max{deg(u),deg(v)}
is a necessary condition. Similar to the global setting, there is evidence that the
bound |L(e)| ≥ deg(e) is not far from being sufficient as well. Borodin, Kostochka,
and Woodall showed that any bipartite graph admits an L-colouring provided that
|L(e)| ≥ deg(e), proving a local version of Galvin’s theorem [2]. Moreover, they
proved that for general graphs a bound of |L(e)| ≥ deg(e) + min{deg(u),deg(v)}
suffices. Our main result is a local analogue of Kahn’s theorem under the condition
that the maximum degree is not too large in terms of the minimum degree.

Theorem 1.2. For ε > 0, let G be a graph with sufficiently large maximum
degree ∆, minimum degree δ ≥ ln25 ∆, and lists of colours L(e). If |L(e)| ≥
(1 + ε) deg(e) for every edge e ∈ E, then there is an L-colouring of G.

We note that results similar to Theorem 1.2 have been obtained for corres-
pondence colourings by Molloy [10] and hypergraphs by Molloy and Reed [11]
in the global setting. We prove Theorem 1.2 in a more general setting involving
weighted lists of colours and also covering linear hypergraphs and correspondence
colourings. To state this, we need a few further definitions.

Let G = (V,E) be a k-uniform hypergraph. We denote incident edges by e ∼ f .
We say that G is linear, if any two edges intersect in at most one vertex. An edge
correspondence σ of G consists of integer permutations σe,f = σf,e for all edges
e ∼ f . For edges e ∼ f and colours c, c′ ∈ N, we say that (e, c) blocks (f, c′), if
σe,f (c) = c′. An assignment of weights to the edges is a function µ : E×N→ [0, 1].
We write |A|µ =

∑
(e,c)∈A µ(e, c) for a set A ⊆ E × N. An (µ, σ)-colouring is a

function γ : E → N such that

• µ(e, γ(e)) > 0 for every e ∈ E; and
• (e, γ(e)) does not block (f, γ(f)) for all edges e ∼ f .

We denote by L(e) the set of all pairs (e, c) for c ∈ N. Finally, let NG,σ(e, v, c) be
the set containing all pairs (f, c′) ∈ E ×N such that f is incident to v, f 6= e and
(f, c′) blocks (e, c). If σ is the trivial correspondence, i.e. where all permutations
are identities, we write NG(e, v, c) = NG,σ(e, v, c) and µ-colouring in place of
(µ, σ)-colouring.
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Now we are ready to state our (stronger) main result.

Theorem 1.3. For every k ∈ N and ε > 0 there is δ with the following proper-
ties. Let G = (V,E) be a k-uniform linear hypergraph with an edge correspondence
σ and weights µ. Suppose that

(a) µ(e, c) ∈ {0} ∪
[
exp

(
−δ1/25

)
, δ−1

]
; and

(b) |L(e)|µ ≥ (1 + ε) · |NG,σ(e, v, c)|µ
for every edge e ∈ E, vertex v ∈ e and colour c ∈ N. Then there is a (µ, σ)-
colouring of G.

In the remainder of the abstract, we will outline the proofs of our results.

2. Proof of the main result

We start by showing how Theorem 1.2 can be derived from Theorem 1.3.

Proof of Theorem 1.2. Let G, δ, ∆ and L(e) be as in the statement of The-
orem 1.2. We assign weights µ(e, c) = 1

deg(e) to each edge e ∈ E and colour

c ∈ L(e). Whenever c /∈ L(e), we set µ(e, c) = 0. Note that, for each edge e ∈ E
and vertex v ∈ e, we have

|L(e)|µ ≥ |L(e)|
deg(e) ≥ 1 + ε

and

|NG(e, v, c)|µ =
∑

f∼v,f 6=e

1

deg(f)
≤

∑
f∼v,f 6=e

1

deg(v)
≤ 1.

So in particular, we can bound |L(e)|µ ≥ (1 + ε) · |NG(e, v, c)|µ. Thus we can
apply Theorem 1.3 with k = 2 and σ being the trivial correspondence to obtain
an L-colouring. �

Next, we sketch the proof of Theorem 1.3. Suppose that G, µ, ε are as in the
statement and, for sakes of simplicity, k = 2 and σ is the trivial correspondence.
An application of the (general) Lovász Local Lemma [4] shows, that we can find a
µ-colouring, provided that |L(e)|µ ≥ 9 · |NG(e, v, c)|µ for every edge e ∈ E, vertex
v ∈ e, and colour c ∈ N.

To obtain the desired factor of 1 + ε instead 9, we follow an iterative approach.
In each step, we colour a few further edges improving the above factor for the
remainder of the graph by a factor of roughly 1 + ε

ln δ . Hence, after O(log δ)
iterations, we can finish by applying the local lemma. The next lemma formalizes
this discussion and presents the heart of our proof.

Lemma 2.1. Let ε > 0 and δ ∈ N large enough. Let G = (V,E) be a graph
with weights µ. Suppose that there are `, n ∈ N such that

(a) µ(e, c) ∈ {0} ∪
[
exp

(
−δ1/20

)
, δ−1

]
;

(b) `
n ≥ 1 + ε;

(c) |L(e)|µ ≥ `; and
(d) |NG(e, v, c)|µ ≤ n;
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for every edge e ∈ E, vertex v ∈ e and colour c ∈ N.
It follows that there is a partial µ-colouring of G with the following properties.

Let E′ be the set of uncoloured edges and G′ = (V,E′). For each e ∈ E′, let µ′(e, ·)
be obtained from µ(e, ·) by setting µ′(e, c) = 0, for each c ∈ N, if an edge adjacent
to e is coloured c. Then, there are `′, n′ ∈ N such that

(a) `′

n′ ≥
(
1 + ε

2 ln δ

)
`
n ;

(b) |L(e)|µ′ ≥ `′; and
(c) |NG′(e, v, c)|µ′ ≤ n′;

for every edge e ∈ E′, vertex v ∈ e and colour c ∈ N.

We remark that Lemma 2.1 is a simplified version of the actual lemma, omitting
hypergraphs, correspondences, and ignoring some of the additional properties that
are necessary for tracking the sizes of the involved parameters during the iterations.

3. The naive colouring procedure

In the following we will provide some more details on the proof of Lemma 2.1.
We find the desired colouring using the naive colouring procedure introduced by
Kahn [9]. This method consists (in its simplest form) of two steps. In step (I), we
randomly assign to each edge a small (possibly empty) set of permissible colours
from its list independently from all other edges. The colours on these lists are
candidates for the final colouring. However, some of these candidates might be in
conflict with each other, i.e. the lists of two adjacent edges may contain the same
colour. In step (II), we resolve these conflicts by removing some colours from the
assigned sets. We then obtain a partial µ-colouring by assigning to each edge with
a non-empty list an arbitrary colour from its list. A concentration analysis shows
that with positive probability this µ-colouring has the desired properties.

Let ε > 0, δ, G and µ be as in the statement of Lemma 2.1. Without loss of
generality, we can assume that |L(e)|µ = ` for every edge. (Otherwise, we simply
‘remove’ some colours of positive weight.) We denote Keep = 1− n

`
1

ln δ .
We use the following random colouring procedure to colour some of the edges

of G. Initialize µ′(e, ·) as copy of µ(e, ·) for each e ∈ E.

(I) For every colour c ∈ N and edge e ∈ E, assign c to e with probability
µ(e,c)
`

1
ln δ independently of all other assignments.

(II) For each edge e, vertex v ∈ e and every pair (f, c) ∈ N (e, v, c), if c was
assigned to f , then
(a) set µ′(e, c) = 0; and
(b) if c was assigned to e, remove c from e.

Let E′ be the set of uncoloured edges after step (II) and G′ = (V,E′). In the
following, we analyse the µ′-weighted sizes of L(e) and NG′(e, v, c). We claim that
with positive probability

(a) |L(e)|µ′ ≥ `′ := ` ·Keep2 − δ2/3; and

(b) |NG′(e, v, c)|µ′ ≤ n′ := n ·Keep ·
(

1− Keep2

ln δ

)
+ δ2/3
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for every edge e ∈ E′, vertex v ∈ e, and colour c ∈ N. Computations show that (a)
and (b) together imply |L(e)|µ′ ≥

(
1 + ε

2 ln δ

)
(1+ε)|NG′(e, v, c)|µ′ , i.e. the desired

outcome of Lemma 2.1. So it only remains to prove these claims.
The strategy is to first argue that (a) and (b) are satisfied with high probability

for a fixed edge e ∈ E′, vertex v ∈ e, and colour c ∈ N. We then use the local
lemma to show that (a) and (b) hold uniformly for all e, v, and c. Let us remark
that the bound µ(e) ≥ exp

(
−δ1/20

)
is crucial for the last step, as it allows us to

bound the size of the second, third, and fourth neighbourhoods.
When bounding |L(e)|µ′ ≥ `′ and |NG′(e, v, c)|µ′ ≤ n′ for fixed e ∈ E′, v ∈ e,

and c ∈ N, our approach follows a concentration argument. If µ(e, c) > 0 for
colour c ∈ N, then the probability that µ′(e, c) = µ(e, c) is roughly1 Keep2. It
follows that E (|L(e)|µ′) ≈ |L(e)|µ · Keep2 = ` · Keep2. Using a weighted version
of Chernoff’s bound, we then show that |L(e)|µ′ is highly concentrated around its
expectation. The case of |NG′(e, v, c)|µ′ , is treated in a similar way. However, the
analysis is more complicated, in particular with regards to correspondences, and
requires the use of Talagrand’s inequality [13].

4. Conclusion

We conclude this abstract with a few open problems. An obvious improvement to
our results would be to remove the condition δ ≥ ln25 ∆ in Theorem 1.2. It does
play a critical role in our proof and it seems therefore that new ideas are required
to solve this.

One way to interpret Conjecture 1.1, is to say that list edge colouring is hardest,
when all lists are the same. Given our results, one might wonder, if we have a
similar phenomenon in the local setting. We define χ′loc(G) to be the smallest
k such that there is an L-colouring from the lists L(e) = {1, . . . ,deg(e) + k}.
Similarly, we let ch′loc(G) be the smallest k such that there is an L-colouring for
every assignment of lists |L(e)| ≥ deg(e)+k. Note that for a regular graph G with
χ′(G) ≥ ∆+1, such k would clearly be at least 1. In the light of Conjecture 1.1, it
is natural to ask if there are any graphs with ch′loc(G) 6= χ′loc(G). This is probably
not easy to answer. On the other hand, we do not know of any graph for which
χ′loc(G) > 1. It would be interesting (and likely more feasible) to find such a graph
or even a sequence of graphs for which χ′loc(G) is unbounded.
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