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MINOR-OBSTRUCTIONS FOR APEX

SUB-UNICYCLIC GRAPHS

A. LEIVADITIS, A. SINGH, G. STAMOULIS, D. M. THILIKOS, K. TSATSANIS

and V. VELONA

Abstract. A graph is sub-unicyclic if it contains at most one cycle. We also say

that a graph G is k-apex sub-unicyclic if it can become sub-unicyclic by removing

k of its vertices. We identify 29 graphs that are the minor-obstructions of the
class of 1-apex sub-unicyclic graphs, i.e., the set of all minor minimal graphs that

do not belong in this class. For bigger values of k, we give an exact structural

characterization of all the cactus graphs that are minor-obstructions of k-apex sub-
unicyclic graphs and we enumerate them. This implies that, for every k, the class

of k-apex sub-unicyclic graphs has at least 0.34 · k−2.5(6.278)k minor-obstructions.

1. Introduction

A graph is called unicyclic if it contains exactly one cycle and is called sub-unicyclic
if it contains at most one cycle. Notice that sub-unicyclic graphs are exactly the
subgraphs of unicyclic graphs.

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained
by some subgraph of G after a series of contractions. We say that a graph class G
is minor-closed if every minor of every graph in G also belongs in G. We also define
obs(G), called the minor-obstruction set of G, as the set of minor-minimal graphs
not in G. It is easy to verify that if G is minor-closed, then G ∈ G iff G excludes all
graphs in obs(G) as a minor. Because of Robertson and Seymour Theorem [17],
obs(G) is finite for every minor-closed graph class. That way, obs(G) can be
seen as a complete characterization of G via a finite set of forbidden graphs. The
identification of obs(G) for distinct minor-closed classes has attracted a lot of
attention in Graph Theory.

There are several ways to construct minor-closed graph classes from others. A
popular one is to consider the set of all k-apices of a graph class G, denoted by
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Ak(G), that contains all graphs that can give a graph in G, after the removal of at
most k vertices. It is easy to verify that if G is minor closed, then the same holds
for Ak(G) as well, for every non-negative integer k. It was also proved in [1] that
the construction of obs(Ak(G)), given obs(G) and k, is a computable problem.

A lot of research has been oriented to the (partial) identification of the minor-
obstructions of the k-apices, of several minor-closed graph classes. For instance,
obs(Ak(G)) has been identified for k ∈ {1, . . . , 7} when G is the set of edgeless
graphs [3, 8, 7], and for k ∈ {1, 2} when G is the set of acyclic graphs [6].
Recently, obs(A1(G)) was identified when G is the class of outerplanar graphs [4]
and when G is the class of cactus graphs (as announced in [11]). A particularly
popular problem is identification of obs(Ak(G)) when G is the class of planar
graphs. The best advance on this question was done recently by Jobson and Kzdy
[14] who identified all 2-connected minor-obstructions of 1-apex planar graphs.
Another recent result is the identification of obs(A1(P)) where P is the class of all
pseudoforests, i.e., graphs where all connected components are sub-unicyclic [16].

A different direction is to upper-bound the size of the graphs obs(Ak(G)) by
some function of k. In this direction, it was proved in [13] that the size of the
graphs in obs(Ak(G)) is bounded by a polynomial on k in the case where the
obs(G) contains some planar graph (see also [19]). Another line of research is to
prove lower bounds to the size of obs(Ak(G)). In this direction Michael Dinneen
proved in [5] that, if all graphs in obs(G) are connected, then |obs(Ak(G))| is
exponentially big.

Another way to prove lower bounds to |obs(Ak(G))| is to completely charac-
terize, for every k, the set obs(Ak(G)) ∩ H, for some graph class H, and then
lower bound |obs(Ak(G))| by counting (asymptotically or exactly) all the graphs
in obs(Ak(G)) ∩ H. This last approach has been applied in [18] when G is the
class of acyclic graphs and H is the class of outerplanar graphs (see also [10, 15]).
Our results. In this paper we study the set obs(Ak(S)) where S is the class of
sub-unicyclic graphs. Certainly the class S is minor-closed (while this is not the
case for unicyclic graphs). It is easy to see that obs(S) = {2K3,K

−
4 , Z}, where

2K3 is the disjoint union of two triangles, K−4 is the complete graph on 4 vertices
minus an edge, and Z the butterfly graph, obtained by 2K3 after identifying two
vertices of its triangles (we call the result of this identification central vertex of Z).

Our first result is the identification of obs(A1(S)), i.e., the minor-obstruction
set of all 1-apices of sub-unicyclic graphs (Section 2). This set contains 29 graphs
that is the union of two sets L0 and L1, depicted in Figures 1 and 2 respectively. An
important ingredient of our proof is the notion of a nearly-biconnected graph, that
is any graph that is either biconnected or it contains only one cut-vertex joining
two blocks where one of them is a triangle. We first prove that L0 is the set of
minor-obstructions in obs(A1(S)) that are not nearly-biconnected. The proof is
completed by proving that the nearly-biconnected graphs in obs(A1(S)) are also
minor-obstructions for 1-apex pseudoforests, i.e., members of obs(A1(P)). As this
set is known from [16], we can identify the remaining obstructions in obs(A1(S)),
that is the set L1, by exhaustive search.
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Our second result is an exponential lower bound on the size obs(Ak(S)) (Sec-
tion 3). For this we completely characterize, for every k, the set obs(Ak(S)) ∩ K
where K is the set of all cacti (graphs whose all blocks are either edges or cycles).
In particular, we first prove that each connected cactus obstruction in obs(Ak(S))
can be obtained by identifying non-central vertices of k + 1 butterfly graphs and
then we give a characterization of disconnected cacti in obs(Ak(S)) in terms of
obstructions in obs(Ak′(S)) for k′ < k (we stress that here the result of Dinneen
in [5] does not apply immediately, as not all graphs in obs(S) are connected).

After identifying obs(Ak(S)) ∩ K, the next step is to count the number of its
elements (Section 4). To that end, we employ the framework of the Symbolic
Method and Singularity Analysis that was developed in [12]. The combinatorial
construction that we devise relies critically on the Dissymmetry Theorem for Trees,
by which one can move from the enumeration of rooted tree structures to unrooted
ones. Our estimation is

|obs(Ak(S)) ∩ K| ∼ c·k−5/2 · xk,

where c ≈ 0.33995 and x ≈ 6.27888. This provides an exponential lower bound
for |obs(Ak(S))|.

2. Minor-obstructions for apex sub-unicyclic graphs

In this section we identify the set obs(A1(S)). Part of it will be the set L0

containing the graphs depicted in Figure 1.

Figure 1. The set L0 of obstructions for A1(S) that are not nearly-biconnected.

Lemma 2.1. If G ∈ obs(A1(S)) and G is not connected, then it holds that
G ∈ {O0

1, . . . , O
0
6}.

Lemma 2.2. If G is a connected graph in obs(A1(S)), with at least three
cut-vertices, then G ∼= O1

1.

Lemma 2.3. If G is a connected graph in obs(A1(S)) with exactly two cut-
vertices, then G ∈ {O1

2, O
1
3}.
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Nearly-biconnected graphs. We say that a graph G is nearly-biconnected if it is
either biconnected or it contains exactly one cut-vertex x and contains two blocks
where one of them is a triangle.

Lemma 2.4. Let G ∈ obs(A1(S)) be a connected graph that contains exactly
one cut-vertex. Then either G ∼= O1

4 or G is nearly-biconnected.

We need the following fact:

Fact 2.5. The graphs in obs(A1(P)) that are nearly-biconnected and belong in
obs(A1(S)) are the graphs in Figure 2.

Figure 2. The set L1 of the 19 nearly-biconnected minor-obstructions for
A1(S) that are also obstructions for A1(P).

The set obs(A1(P)) consists of 33 graphs and has been identified in [16]. The
correctness of Fact 2.5 can be verified by exhaustive check, considering all nearly-
biconnected graphs in obs(A1(P)) (they are 26) and then filter those that belong
in obs(A1(S)). For this, one should pick those that become apex sub-unicyclic
after the contraction or removal of each of their edges. Notice that the fact that
these graphs are not apex-sub-unicyclic follows directly by the fact that they are
not apex-pseudoforests (as members of obs(A1(P))) and the fact that S ⊆ P.
The choice of L1 is justified by the next lemma.

Lemma 2.6. If G is a nearly-biconnected graph in obs(A1(S)), then G ∈
obs(A1(P)).

We are now ready to prove the main result of this section.

Theorem 2.7. obs(A1(S)) = L0 ∪ L1.

Proof. Recall that L0 = {O0
1, . . . , O

0
6}∪{O1

1, O
1
2, O

1
3, O

1
4}. Notice that L0∪L1 ⊆

obs(A1(S)). Let G ∈ obs(A1(S)). If G is disconnected, then, from Lemma 2.1,
G ∈ {O0

1, . . . , O
0
6}. If G is connected and has at least three cut-vertices, then from

Lemma 2.2, G ∼= O1
1. If G is connected and has exactly two cut-vertices, then

from Lemma 2.3, G ∈ {O1
2, O

1
3}. If G is connected with exactly one a cut-vertex

and is not nearly-biconnected then, from Lemma 2.4, G ∼= O1
4. We just proved
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that if G is not nearly-biconnected, then G ∈ L0. On the other side, if G is nearly-
biconnected, then from Lemma 2.6, G ∈ obs(A1(P)), therefore, from Fact 2.5,
G ∈ L1, as required. �

3. Structural characterisation of cactus obstructions

Recall that a cactus graph is a graph where all its blocks are either edges or cycles.
Equivalently, a graph is a cactus graph, if it does not contain K−4 as a minor. We
denote by K the set of all cactus graphs. In this section we provide a complete
characterization of the class of obs(Ak(S)) ∩ K.
Butterflies and Butterfly-Cacti. We denote by Z the butterfly graph. We will
frequently refer to graphs isomorphic to Z simply as butterflies. Given a butterfly
Z we call all its four vertices that have degree two, extremal vertices of Z and the
unique vertex of degree four, central vertex.

Let k be a positive integer. We recursively define the graph class of the k-
butterfly-cacti, denoted by Zk, as follows: We set Z1 = {Z}, where Z is the
butterfly graph, and given a k ≥ 2 we say that G ∈ Zk if there is a graph
G′ ∈ Zk−1 such that G is obtained if we take a copy of the butterfly graph Z
and then we identify one of its extremal vertices with a non-central vertex of G′.
The central vertices of the obtained graph G are the central vertices of G′ and the
central vertex of Z.

Theorem 3.1. Let k ∈ N, let G be a disconnected cactus graph in obs(Ak(S)),
and let G1, G2, . . . , Gr be the connected components of G. Then, one of the fol-
lowing holds:

• G ∼= (k + 2)K3

• there is a sequence k1, k2, . . . , kr such that for every i ∈ [r], Gi is a graph
in Zki

and
∑

i∈[r] ki = k + 1.

4. Enumeration of cactus obstructions

Let G = obs(Ak(S)) ∩ K. In this section, we determine the asymptotic growth
of gk = |obs(Ak(S)) ∩ K| and zk = |Zk|. To this end, we make use of the Sym-
bolic Method framework and the corresponding analytic techniques, as developed
in [12].

4.1. A bijection of Z with a family of trees

We begin by giving a bijection between the combinatorial class Z, i.e., con-
nected graphs in obs(Ak(S))∩K counted with respect to the number of butterfly-
subgraphs, and the following family of trees. Let T be the family of trees having
three different types of vertices, namely �-, M-, and ◦-vertices, and meeting the
following conditions:

1. The neighbourhood of a �-vertex consists of two M-vertices.
2. The neighbourhood of a M-vertex consists of a �-vertex and two ◦-vertices.
3. The neighbourhood of a ◦-vertex consists of one or more M-vertices.
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Consider the combinatorial class T counted with respect to the number of its
�-vertices. Then, one can construct a bijection between Z and T that proves the
following Lemma (see Figure 3 for an example).

Lemma 4.1. The combinatorial classes Z and T are isomorphic.

Figure 3. A graph in Z and its image in T , under the bijection of Theorem 4.1.

By Lemma 4.1, enumerating Z is equivalent to enumerating T . To this end, we
will make use of the combinatorial classes T �, T M, T ◦, T ◦−M, T �−M, T �→M, T M→�,
T M→◦, T ◦→M, which are trees in T that are rooted on vertices, edges, or directed
edges, of the indicated types. We denote by plain letters the corresponding gener-
ating functions. Using the well-known Dissymmetry Theorem for Trees (see [2]),
we can show the following:

Lemma 4.2. G(x) = exp
(∑

k≥1
T (xk)

k

)
. Moreover, T (x) satisfies:

T (x) = T�(x) + TM(x) + T ◦(x)− T�→M(x)− TM→◦(x).(1)

To obtain defining systems for T�(x), TM(x), T ◦(x), T�→M(x), TM→◦(x), we de-
fine the auxiliary combinatorial classes T� and T?. T� contains trees in T rooted
at a leaf and T? contains multisets of trees in T�.

Lemma 4.3. The generating functions T?, T�, T�, TM, T ◦, T�→M, TM→◦ are de-
fined through the following system of functional equations.

T�(x) =
x

2
exp

(∑
k≥1

T�(x
k)

k

)(
exp

(∑
k≥1

2T�(x
k)

k

)
+ exp

(∑
k≥1

T�(x
2k)

k

))
T?(x) = exp

(∑
k≥1

T�(x
k)

k

)
, T ◦(x) = exp

(∑
k≥1

T�(x
k)

k

)
− 1

T�(x) =
x

8
T? (x)

4
+
x

4
T?(x)2T?(x2) +

3x

8
T?(x2)2 +

x

4
T?(x4)

TM(x) =
x

4
T?(x)4 +

x

2
T?(x)2T?(x2) +

x

4
T?(x2)2

T�→M(x) =
x

4
T?(x)4 +

x

2
T?(x)2T?(x2) +

x

4
T?(x2)2

TM→◦(x) =
x

2
T? (x)

4
+
x

2
T?(x)2 T?(x2)
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By the defining systems of T (x) and G(x), we can obtain the first terms

T (x) = x+ x2 + 3x3 + 7x4 + 25x5 + 88x6 + 366x7 + 1583x8 + 7336x9 + · · ·
G(x) = 1 + z + 2x2 + 5x3 + 13x4 + 41x5 + 143x6 + 558x7 + 2346x8 + · · ·

4.2. Asymptotic analysis

Having set up a system of functional equations for the generating functions Z(x)
and G(x), we can determine the asymptotic growth of zk and gk via the process
of singularity analysis (see http://www.cs.upc.edu/~sedthilk/osmc/apexmo.mw
for the corresponding numerical computations).

Lemma 4.4. The generating functions Z(x), G(x) have a unique singularity of
smallest modulus at the same positive number ρ < 1. Moreover, they are analytic
in a dented domain at ρ and satisfy expansions

Z(x) = Z0 +
∑
k≥2

ZkX
k, G(x) = G0 +

∑
k≥2

GkX
k, where X =

√
1− x/ρ,

locally around ρ. The coefficients Zi, Gi, and ρ are computable; in particular,
ρ ≈ 0.15926.

Proof Sketch. To analyse T�(z), we use [9, Proposition 1, Lemma 1]. Define

F (x, y) to be the following expression: x
2 exp(y +

∑
k≥2

T�(x
k)

k )(exp(2y +
∑

k≥2

2T�(x
k)

k ) + exp(
∑

k≥1
T�(x

2k)
k )). The system {y = F (x, y), 1 = Fy(x, y)} can be

solved numerically, using truncations of the functions T�(x
k). Then, one obtains

an expansion of the form A0 +
∑

k≥1AkX
k for y := T�. The rest of the functions

defined in 4.3 inherit the same type of expansion at the same point ρ and all the
involved coefficients are computable.

Using Equation 1, we can obtain a similar expansion for Z(x) (recall that Z(x) =
T (x) by Lemma 4.1), only now Z1 is zero. We can show this formally, by obtaining
an expression for Z1 depending on Ai and then noticing that 0 = Fy(ρ, y0)− 1 =
1
A1
Z1. It is easy to see that Z3 does not vanish, with a combinatorial argument.

The result also holds for G(x), using Lemma 4.2. �

The final estimate follows by applying the Transfer Theorems of singularity
analysis [12, Corrollary VI.1, Theorem VI.4].

Corollary 4.5. The coefficients of Z(x), G(x) satisfy an asymptotic growth of
the form

cn−
5
2 ρ−n,

where c is equal to Z3

Γ(−3/2) ≈ 0.27160 and G3

Γ(−3/2) ≈ 0.33995, respectively, and

ρ−1 ≈ 6.27888.
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14. Jobson A. S. and Kézdy A. E., All minor-minimal apex obstructions with connectivity two,

arXiv:1808.05940.
15. Koutsonas A., Thilikos D. M. and Yamazaki K., Outerplanar obstructions for matroid path-

width, Discrete Math. 315–316 (2014), 95–101.

16. Leivaditis A., Singh A., Stamoulis G., Thilikos D. M. and Tsatsanis K., Minor-obstructions
for apex-pseudoforests, arXiv:1811.06761.

17. Robertson N. and Seymour P. D., Graph minors. XX. Wagner’s conjecture, J. Combin.

Theory Ser. B 92 (2004), 325–357. 2004.
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