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RESOLUTION OF THE OBERWOLFACH PROBLEM

S. GLOCK, F. JOOS, J. KIM, D. KÜHN and D. OSTHUS

Abstract. The Oberwolfach problem, posed by Ringel in 1967, asks for a decom-

position of K2n+1 into edge-disjoint copies of a given 2-factor. We show that this

can be achieved for all large n. We actually prove a significantly more general result,
which allows for decompositions into more general types of factors. In particular,

this also resolves the Hamilton-Waterloo problem for large n.

1. Introduction

A central theme in Combinatorics and related areas is the decomposition of large
discrete objects into simpler or smaller objects. In graph theory, this can be traced
back to the 18th century, when Euler asked for which orders orthogonal Latin
squares exist (which was finally answered by Bose, Shrikhande, and Parker [5]).
This question can be reformulated as the existence question for resolvable trian-
gle decompositions in the balanced complete tripartite graph. (Here a resolvable
triangle decomposition is a decomposition into edge-disjoint triangle factors.) In
the 19th century, Walecki proved the existence of decompositions of the complete
graph Kn (with n odd) into edge-disjoint Hamilton cycles and Kirkman formu-
lated the school girl problem. The latter triggered the question for which n the
complete graph on n vertices admits a resolvable triangle decomposition, which
was finally resolved in the 1970s by Ray-Chaudhuri and Wilson [30] and indepen-
dently by Jiaxi. This topic has developed into a vast area with connections e.g. to
statistical design and scheduling, Latin squares and arrays, graph labellings as well
as combinatorial probability.

A far reaching generalisation of Walecki’s theorem and Kirkman’s school girl
problem is the following problem posed by Ringel in Oberwolfach in 1967 (cf. [25]).

Problem 1.1 (Oberwolfach problem). Let n ∈ N and let F be a 2-regular
graph on n vertices. For which (odd) n and F does Kn decompose into edge-
disjoint copies of F?
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Addressing conference participants in Oberwolfach, Ringel fittingly formulated
his problem as a scheduling assignment for diners: assume n people are to be
seated around round tables for n−1

2 meals, where the total number of seats is
equal to n, but the tables may have different sizes. Is it possible to find a seating
chart such that every person sits next to any other person exactly once?

We answer this affirmatively for all sufficiently large n. Note that the Ober-
wolfach problem does not have a positive solution for every odd n and F (indeed,
there are four known exceptions).

A further generalisation is the Hamilton-Waterloo problem; here, two cycle
factors are given and it is prescribed how often each of them is to be used in the
decomposition. We also resolve this problem in the affirmative (for large n) via
the following even more general result. We allow an arbitrary collection of types of
cycle factors, as long as one type appears linearly many times. This immediately
implies that the Hamilton-Waterloo problem has a solution for large n for any
bounded number of given cycle factors.

Theorem 1.2. For every α > 0, there exists an n0 ∈ N such that for all odd
n ≥ n0 the following holds. Let F1, . . . , Fk be 2-regular graphs on n vertices and
let m1, . . . ,mk ∈ N be such that

∑
i∈[k]mi = (n − 1)/2 and m1 ≥ αn. Then

Kn admits a decomposition into graphs H1, . . . ,H(n−1)/2 such that for exactly mi

integers j, the graph Hj is isomorphic to Fi.

Here we say a graph G admits a decomposition into graphs H1, . . . ,Ht if there
exist edge-disjoint copies of H1, . . . ,Ht in G such that every edge of G belongs to
exactly one copy.

Several authors (see e.g. Huang, Kotzig, and Rosa [19]) considered a variant of
the Oberwolfach problem for even n; to be precise, here we ask for a decomposition
of Kn minus a perfect matching into n/2−1 copies of some given n-vertex 2-regular
graph F . We will deduce Theorem 1.2 from a more general result (Theorem 1.3)
which also covers this case.

The Oberwolfach problem and its variants have attracted the attention of many
researchers, resulting in more than 100 research papers covering a large number of
partial results. Most notably, Bryant and Scharaschkin [8] proved it for infinitely
many n. Traetta [31] solved the case when F consists of two cycles only, Bryant
and Danziger [6] solved the variant for even n if all cycles are of even length,
Alspach, Schellenberg, Stinson, and Wagner [3] solved the case when all cycles
have equal length (see [18] for the analogous result for n even), and Hilton and
Johnson [17] solved the case when all but one cycle have equal length.

A related conjecture of Alspach stated that for all odd n the complete graph Kn

can be decomposed into any collection of cycles of length at most n whose lengths
sum up to

(
n
2

)
. This was solved by Bryant, Horsley, and Pettersson [7]. Also

similar in spirit to the Oberwolfach problem, Ringel conjectured that for every n
and every tree T on n+ 1 vertices, 2n+ 1 copies of T decompose K2n+1. This has
been solved if T has bounded maximum degree in [20], and solved approximately
(for slightly smaller trees) by Montgomery, Pokrovskiy, and Sudakov [27].
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Most classical results in the area are based on algebraic approaches, often by
exploiting symmetries. More recently, major progress for decomposition prob-
lems has been achieved via absorbing techniques in combination with approxi-
mate decomposition results (often also in conjunction with probabilistic ideas).
This started off with decompositions into Hamilton cycles [10, 24], followed by
the existence of combinatorial designs [15, 16, 21, 22] and progress on the tree
packing conjecture [20]. In this paper, at a very high level, we also pursue such
an approach. As approximate decomposition results, we exploit a hypergraph
matching argument due to Alon and Yuster [2] (which in turn is based on the
Rödl nibble via the Pippenger-Spencer theorem [29]) and a bandwidth theorem
for approximate decompositions due to Condon, Kim, Kühn, and Osthus [9]. Our
absorption procedure utilizes as a key element a very special case of a recent result
of Keevash on resolvable designs [22].

Whenever we only seek an approximate decomposition of a graph G, the target
graphs can be significantly more general and divisibility conditions disappear. In
particular, Allen, Böttcher, Hladký, and Piguet [1] considered approximate de-
compositions into graphs of bounded degeneracy and maximum degree o(n/ log n)
whenever the host graph G is sufficiently quasirandom, and Kim, Kühn, Osthus,
and Tyomkyn [23] considered approximate decompositions into graphs of bounded
degree in host graphs G satisfying weaker quasirandom properties (namely, ε-
superregularity). Their resulting blow-up lemma for approximate decompositions
was a key ingredient for [9, 20] (and thus for the current paper too). It also
implies that an approximate solution to the Oberwolfach problem can always be
found (this was obtained independently by Ferber, Lee, and Mousset [12]).

Our Theorem 1.2 actually follows from the following more general Theorem 1.3,
which allows separable graphs. An n-vertex graph H is said to be ξ-separable if
there exists a set S of at most ξn vertices such that every component of HrS has
size at most ξn. Examples of separable graphs include cycles, powers of cycles,
planar graphs, and F -factors. More generally, for bounded degree graphs, the
notion of separability is equivalent to that of small bandwidth.

Theorem 1.3. For given ∆ ∈ N and α > 0, there exist ξ0 > 0 and n0 ∈ N
such that the following holds for all n ≥ n0 and ξ < ξ0. Let F ,H be collections of
graphs satisfying the following:

• F is a collection of at least αn copies of F , where F is a 2-regular n-vertex
graph;

• each H ∈ H is a ξ-separable n-vertex rH-regular graph for some rH ≤ ∆;
• e(F ∪H) =

(
n
2

)
.

Then Kn decomposes into F ∪H.

Clearly, Theorem 1.3 implies Theorem 1.2 and also its corresponding version if
n is even and we ask for a decomposition of Kn minus a perfect matching.

While far more general than the Oberwolfach problem, Theorem 1.3 may be
just the tip of the iceberg, and it seems possible that the following is true.
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Conjecture 1.4. For all ∆ ∈ N, there exists an n0 ∈ N so that the following
holds for all n ≥ n0. Let F1, . . . , Ft be n-vertex graphs such that Fi is ri-regular
for some ri ≤ ∆ and

∑
i∈[t] ri = n− 1. Then there is a decomposition of Kn into

F1, . . . , Ft.

The above conjecture is implicit in the ‘meta-conjecture’ on decompositions
proposed in [1].

Rather than considering decompositions of the complete graph Kn, it is also
natural to consider decompositions of host graphs of large minimum degree (this
has applications e.g. to the completion of partial decompositions of Kn). Indeed,
a famous conjecture of Nash-Williams [28] states that every n-vertex graph G
of minimum degree at least 3n/4 has a triangle decomposition (subject to the
necessary divisibility conditions). The following conjecture would (asymptotically)
transfer this to arbitrary 2-regular spanning graphs.

Conjecture 1.5. Suppose G is an n-vertex r-regular graph with even
r ≥ 3

4n + o(n) and F is a 2-regular graph on n vertices. Then G decomposes
into copies of F .

The (asymptotic version of the) Nash-Williams conjecture was reduced to its
fractional version in [4]. In combination with [11], this shows that the Nash-
Williams conjecture holds with 3n/4 replaced by 9n/10 + o(n). There has also
been considerable progress on decomposition problems involving such host graphs
of large minimum degree into other fixed subgraphs H rather than triangles [14,
26]. It turns out that the chromatic number of H is a crucial parameter for this
problem. In particular, as proved in [14], for bipartite graphsH the ‘decomposition
threshold’ is always at most 2

3n+ o(n).
Clearly, one can generalise Conjecture 1.5 in this direction, e.g. to determine

the decomposition threshold for Kr-factors. It might also be true that the ‘3/4’ in
Conjecture 1.5 can be replaced by ‘2/3’ if F consists only of even cycles. We are
confident that the ideas from this paper will be helpful in approaching these and
other related problems. A full version of this paper can be found here [13].

2. Proof sketch

For simplicity, we just sketch the argument for the setting of the Oberwolfach
problem; that is, we aim to decompose Kn into n−1

2 copies of an n-vertex 2-
regular graph F . The proof essentially splits into two cases. In the first case we
assume that almost all vertices of F belong to ‘short’ cycles, of length at most 500.
Note that there must be some cycle length, say `∗, such that at least n/600 vertices
of F lie in cycles of length `∗. We will take a suitable number of random slices
of the edges of Kn and then first embed, for every desired copy of F , all cycles
whose lengths are different from `∗. For this, we use standard tools based on the
Rödl nibble. We then complete the decomposition by embedding all the cycles of
length `∗. This last step uses a special case of a recent result of Keevash on the
existence of resolvable designs [22].
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The second case is much more involved and forms the core of the proof. We are
now guaranteed that a (small) proportion of vertices of F lies in ‘long’ cycles. To
motivate our approach, consider the following simplified setup. Suppose F consists
only of cycles whose lengths are divisible by 3, and suppose for the moment we
seek an F -decomposition of a 3-partite graph G with equitable vertex partition
(V1, V2, V3) (so G is a C3-blowup). Let `1, . . . , `t be the sequence of cycle lengths
appearing in F . Now, take any permutation π on V3 which consists of cycles of
lengths `1/3, . . . , `t/3. For instance, a C3 in F corresponds to a fixed point in π,
and a C6 in F corresponds to a transposition in π. Now, define an auxiliary graph
π(G) by ‘rewiring’ the edges between V2 and V3 according to π. More precisely,
we ensure that Eπ(G)(V2, V3) = {v2π(v3) : v2v3 ∈ E(G)}. Suppose that F ′ is a
C3-factor in π(G). By ‘reversing’ the rewiring, we obtain a copy of F in G. More
precisely, let π−1(F ′) be the graph obtained from F ′ by replacing F ′[V2, V3] with
{v2π−1(v3) : v2v3 ∈ E(F ′)}. Clearly, π−1(F ′) ∼= F and π−1(F ′) ⊆ G. What
is more, this rewiring is canonical in the following sense: if F ′ and F ′′ are edge-
disjoint C3-factors in π(G), then π−1(F ′) and π−1(F ′′) will be edge-disjoint copies
of F in G. Thus, a resolvable C3-decomposition of π(G) immediately translates
into an F -decomposition of G.

Similarly, if all cycle lengths in F are divisible by 4, we can reduce the prob-
lem of finding an F -decomposition of a C4-blowup to the problem of finding a
resolvable C4-decomposition of a suitably rewired C4-blowup. In order to deal
with arbitrary 2-regular graphs F , we interweave such constructions for C3, C4

and C5. In our proof we construct an ‘absorbing graph’ G which is a partite graph
on 18 vertex classes such that finding an F -decomposition of G can be reduced
to finding resolvable C3, C4, C5-decompositions of suitable auxiliary graphs, in a
similar way as sketched above. Crucially, G has this property in a robust sense:
even if we delete an arbitrary sparse graph L from G, as long as some necessary
divisibility conditions hold, we are still able to find an F -decomposition of G−L.

The overall strategy is thus as follows: first, we removeG fromKn. Then we find
an approximate decomposition of the remainder, which leaves a sparse leftover. For
this, we employ the recent bandwidth theorem for approximate decompositions [9].
(The existence of an approximate decomposition of Kn − G would also follow
directly from the blow-up lemma for approximate decompositions [23], but this
would leave a leftover whose density is larger than that of the absorbing graph G,
making our approach infeasible.) We then deal with this leftover by using some
edges of G, in a very careful way, such that the remainder of G is still appropriately
divisible. The remainder of G then decomposes as sketched above. In order to
decompose the auxiliary graphs, we again use a very special case of the main
result in [22]. The fact that we are guaranteed that F has some long cycles will
be helpful to construct the absorbing graph G, more precisely, to ensure that all
the 18 vertex classes are of linear size. It is also essential when dealing with the
leftover of the approximate decomposition.



740 S. GLOCK, F. JOOS, J. KIM, D. KÜHN and D. OSTHUS
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