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ON 2-FACTORS WITH A SPECIFIED NUMBER OF

COMPONENTS IN LINE GRAPHS

S. CHIBA, Y. EGAWA, J. FUJISAWA, A. SAITO, I. SCHIERMEYER, M. TSUGAKI

and T. YAMASHITA

Abstract. Kaiser and Vrána [European J. Combin. 33 (2012), 924–947] showed

that every 5-connected line graph of minimum degree at least 6 is hamiltonian,
which gives a partial solution to Thomassen’s Conjecture on hamiltonicity of line

graphs [J. Graph Theory 10 (1986), 309–324]. In this paper, we prove that every

5-connected line graph of sufficiently large order compared with a given positive
integer k and of minimum degree at least 6 also has a 2-factor with exactly k cycles.

In order to show this result, we investigate minimum degree conditions for the
existence of such a 2-factor in hamiltonian line graphs.

1. Introduction

In this paper, a graph or a simple graph means a finite undirected graph without
loops or multiple edges. A multigraph may contain multiple edges but no loops.
For a (multi)graph G, we denote by V (G), E(G) and δ(G) the vertex set, the edge
set and the minimum degree of G, respectively. The line graph of a (multi)graph
H, denoted by L(H), is the graph on vertex set E(H) in which two vertices in L(H)
are adjacent if and only if their corresponding edges in H share an end vertex. A
graph G is a line graph if it is isomorphic to L(H) for some (multi)graph H, and
we call H a preimage of G.

A graph is said to be hamiltonian if it has a Hamilton cycle, i.e., a cycle con-
taining all the vertices. The problem of finding a Hamilton cycle is a fundamental
problem in graph theory. But, it is NP-complete, and so various kinds of sufficient
conditions for hamiltonicity of graphs have been extensively studied (see [6, 7]).
In the literature, there also remain important unsolved problems. For instance,
Thomassen posed the following to approach Chvátal’s Toughness Conjecture (“ev-
ery 2-tough graph is hamiltonian”).

Conjecture A (Thomassen [15]). Every 4-connected line graph is hamiltonian.
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It is known that Conjecture A is equivalent to several other statements, some
seemingly weaker or stronger than Conjecture A. For example, Ryjáček [13] proved
that Conjecture A is equivalent to Matthews and Sumner’s Conjecture [11] which
states that every 4-connected claw-free graph is hamiltonian. The Dominating
Cycle Conjecture (“every cyclically 4-edge-connected cubic graph has a dominating
cycle”) by Fleischner is also known to be equivalent to Conjecture A, see the paper
by Fleischner and Jackson [5]. For other results and conjectures, we refer the
reader to [2].

On the other hand, as a positive result related to Conjecture A, Zhan [16] and
independently Jackson (unpublished) proved that every 7-connected line graph is
hamiltonian. Kaiser and Vrána, in 2012, improved this result as follows, which is
the currently best connectivity result related to Conjecture A.

Theorem B (Kaiser, Vrána [10]). Every 5-connected line graph G of a multi-
graph with δ(G) ≥ 6 is hamiltonian.

A 2-factor of a graph is a spanning subgraph in which every component is a
cycle. Thus a Hamilton cycle is a 2-factor with “exactly 1 component (cycle)”.
This naturally leads us to consider sufficient conditions for a graph to have a
2-factor with a specified number of components. In fact, Brandt et al. [1] studied
this problem and showed that the same degree condition as the classical Ore’s
Theorem [12], i.e., the degree sum is at least |V (G)| for any pair of non-adjacent
vertices in a graph G, also guarantees the existence of such a 2-factor for sufficiently
large graphs. Related results are also shown for dense graphs (see e.g., [4]).

Motivated by Conjecture A and Theorem B, in this research, we consider the
above problem for line graphs. The following result, which is our main result, shows
that the same degree condition as in Theorem B also guarantees the existence of a
2-factor with exactly k (≥ 2) cycles for sufficiently large hamiltonian line graphs.

Theorem 1. For every integer k with k ≥ 2, there exists an integer n = n(k)
such that every hamiltonian line graph G of a multigraph with |V (G)| ≥ n and
δ(G) ≥ 6 has a 2-factor with exactly k cycles.

Our proof gives n = O(k6). We do not believe that it is the optimum order for
n. But, for the sake of clarity in the proof, we do not attempt to improve n. (We
upload the full version of the paper at our website [3]. See it for the detail of the
proof.)

By Theorems 1 and B, we get the following.

Corollary 2. For every positive integer k, there exists an integer n = n(k)
such that every 5-connected line graph G of a multigraph with |V (G)| ≥ n and
δ(G) ≥ 6 has a 2-factor with exactly k cycles.

In order to prove Theorem 1, we consider decompositions of a “large circuit”
into a prescribed number of edge-disjoint circuits. In the next section, we introduce
the key lemma (Lemma 2) for the proof of Theorem 1. In Section 3, we give some
remarks on the minimum degree condition in Theorem 1 and some open problems.
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2. Circuit decompositions

Gould and Hynds [8] introduced the notion of a k-system that dominates a given
simple graph, and gave a criterion for a line graph of a simple graph to have a
2-factor with exactly k cycles. In this paper, we first extend this notion so that
it works in the class of line graphs of multigraphs (see Lemma 1). Note that a
circuit in a graph H naturally corresponds to a cycle in L(H) in the class of simple
graphs. But in the class of multigraphs, a circuit of length 2 may arise, which does
not correspond to a cycle in the line graph.

A circuit is a connected multigraph in which every vertex has a positive even
degree. A star is a multigraph consisting of at least two edges incident with one
common vertex. Hence, in this paper, a star may contain a circuit. Note also that
there is even a graph which is both a star and a circuit. Now let k be a positive
integer, and let H be a multigraph and S be a set of circuits and stars in H.
If S satisfies the following conditions (S1)–(S4), then S is called a k-system that
dominates H. Here, for a set F of graphs, we define E(F) =

⋃
F∈F E(F ).

(S1) |S| = k.
(S2) Any two distinct elements of S are edge-disjoint in H.
(S3) Every element of S has size at least 3.
(S4) Every edge in E(H) r E(S) is incident with a circuit of an element of S.

By using a theorem of Harary and Nash-Williams [9] concerning a necessary and
sufficient condition for the existence of a Hamilton cycle in line graphs, we can
show the following.

Lemma 1. Let k be a positive integer, and let H be a multigraph. Then the line
graph L(H) has a 2-factor with exactly k cycles if and only if H has a k-system
that dominates H.

Therefore it suffices to show the existence of a k-system that dominates a preim-
age H of a line graph G in the proof of Theorem 1.

Let H be a multigraph. For two vertices x and y, the number of edges of
H joining them is called the edge-multiplicity of x and y. The maximum edge-
multiplicity over all pairs of vertices is denoted by µ(H). For an integer s ≥ 2,
an s-bond of H is a set of s edges joining two vertices of edge-multiplicity exactly
s. In particular, an s-bond is said to be pendant if one of the two ends, say x,
satisfies degH(x) = s, where degH(x) denotes the degree of x in H. We also define
V≥4(H) = {v ∈ V (H) : degH(v) ≥ 4}. The following lemma plays a crucial role
to construct a k-system in the proof of Theorem 1.

Lemma 2. Let l be an integer with l ≥ 2, and let C be a circuit. Suppose that
C satisfies the following conditions (a-1)–(a-3):

(a-1) µ(C) ≤ 2.
(a-2) C does not have a pendant 2-bond.

(a-3)
∑

v∈V≥4(C)

degC(v) ≥ 4

(
1 +

(l − 2)(4l2 + 5l + 9)

3

)
.
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Then C contains l edge-disjoint circuits C1, . . . , Cl such that |E(Cp)| ≥ 3 for
1 ≤ p ≤ l and

⋃
1≤p≤lE(Cp) = E(C).

We now give a high-level overview of the proof of Theorem 1: Let H be a
multigraph such that L(H) is a hamiltonian graph of sufficiently large order and
δ(L(H)) ≥ 6. Then H has a dominating circuit C, i.e., each edge of H is incident
to a vertex of C. If the degree sum of vertices with degree at least 4 in C is
large compared with k, then by removing the appropriate number of edges from
s-bonds (s ≥ 3) and pendant 2-bonds of C and, if possible, by taking edge-disjoint
stars of size 3 or 4 consisting of the removed edges and edges in E(H) r E(C) as

many as possible, we construct a circuit C̃ from C so that C̃ satisfies (a-1)–(a-3)
in Lemma 2 for some integer l depending on k and the number of the stars of
size 3 or 4 (note that we use the degree condition in this argument). Then we

can construct a k-system that dominates H from the circuit decomposition of C̃
and the stars. On the other hand, for the case where the degree sum is small, we
take edge-disjoint stars of size 3 consisting of edges in E(H) r E(C) as many as
possible, and then we can construct a k-system that dominates H from C and the
stars; otherwise, we can get a larger dominating circuit and this results in the first
case (note that we also use the degree condition in this argument). We refer to [3]
for the detail.

3. Future work

In this research, we have investigated sufficient conditions for the existence of a
2-factor with a specified number of components in line graphs, and have shown
that for a sufficiently large hamiltonian line graph, minimum degree at least 6
suffices for the existence of such a 2-factor (Theorem 1). However, we do not know
whether the lower bound on the minimum degree condition in Theorem 1 is sharp
or not. The following example shows that minimum degree at least 5 is necessary:
Let k be an integer with k ≥ 2, and let n be a sufficiently large integer compared
with k. Let H be the multigraph obtained from a cycle u1v1u2v2 . . . unvnu1 of
order 2n by replacing the edge uivi with a 3-bond for 1 ≤ i ≤ n. Then L(H) is
a hamiltonian graph of minimum degree 4. Let I = {viui+1 | 1 ≤ i ≤ n}, where
un+1 = u1. Then, for any cycle C in L(H), |V (C) ∩ I| = 1, 2 or n. Since n� k,
this yields that L(H) does not have a 2-factor with exactly k cycles. Hence we
can raise the following problem.

Problem 1. Is it true that, for every integer k with k ≥ 2, there exists an
integer n = n(k) such that every hamiltonian line graph G of a multigraph with
|V (G)| ≥ n and δ(G) ≥ 5 has a 2-factor with exactly k cycles?

As a possible extension of the research in this paper, we also raise the problem
on the existence of a 2-factor with a specified number of components in a claw-free
graph (i.e., a graph which contains no induced K1,3). For problems on hamil-
tonicity of claw-free graphs, the closure concept introduced by Ryjáček [13] can
be a very useful tool. In fact, there are many results which rely on the Ryjáček
closure, i.e., the results are shown for line graphs first, and then these are deduced
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by stability in the class of claw-free graphs under the closure. Similar to the re-
lationship between Thomassen’s Conjecture and Matthews-Sumner’s Conjecture,
Theorem B was extended to claw-free graphs by using the closure concept (see
[10, Corollary 25]). However, having a 2-factor with exactly k cycles is not stable
in the class of claw-free graphs under the Ryjáček closure (see [14]). Therefore, we
need another approach to extend Theorem 1 to claw-free graphs, and considering
it might be interesting.

Problem 2. Determine a sharp minimum degree condition to guarantee that a
hamiltonian claw-free graph (of sufficiently large order) has a 2-factor with exactly
k cycles. Is minimum degree at least 5 enough?
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