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MB-HOMOGENEOUS GRAPHS AND SOME NEW

HH-HOMOGENEOUS GRAPHS

A. ARANDA and D. HARTMAN

Abstract. We present a result showing that any countably infinite HH-homo-

geneous graph that does not contain the Rado graph as a spanning subgraph has

finite independence number; from this we derive a classification of MB-homogeneous
graphs. Additionally, we present constructions that yield new HH-homogeneous

graphs.

Homomorphism-homogeneity was introduced in [3] as a variation on ultrahomo-
geneity. A relational structure G is homomorphism-homogeneous if every homo-
morphism f between finite induced substructures is the restriction of an endomor-
phism F of G to the domain of f . This definition can be refined by specifying what
kind of homomorphism is f and what kind of endomorphism F is; Lockett and
Truss introduced many of these classes in [6]. Following the tradition, we specify
a morphism-extension class by two characters XY, where X comes from {H,M, I}
(the letters stand for Homomorphism, Monomorphism, and Isomorphism) and Y
comes from {H, I,A,B,M} (corresponding to endomorphism, Isomorphism, Au-
tomorphism, Bimorphism, Monomorphism). Then G is XY-homogeneous if every
X-morphism between finite substructures extends to a global Y-morphism.

Attempts at classification followed the original Cameron-Nešetřil paper. We
have two levels of classification: first, the basic question of what the partial order
of morphism-extension classes looks like for a given class of structures (Rusinov
and Schweitzer proved the equality of HH and MH for graphs and separated some
other classes in [7], and other authors have studied similar problems for the rel-
atively general L-colored graphs, finite [5] and countably infinite [1]). A more
ambitious project is to classify each class. For example, classify all countable HH-
homogeneous graphs. Although classification of finite undirected HH-homogeneous
graphs is easy and finished [3], the same task for countably inifinite graphs remains
open. Any classification will necessarily be up to a much coarser equivalence re-
lation than isomorphism, because there are uncountably many non-isomorphic
HH-homogeneous graphs.
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We provide a classification of countably infinite MB-homogeneous graphs up to
bimorphism-equivalence, answering a question from [4], as well as some prelimi-
nary results for a classification of HH-homogeneous graphs. Full versions of the
arguments that prove the classification of MB-homogeneous graphs can be found
in [2]. All graphs in this paper are countably infinite.

Let (4) denote the property of containing the Rado graph as a spanning sub-
graph. In the original paper [3], it was observed that any countably infinite graph
that satisfies (4) is homomorphism-homogeneous, but not all HH-homogeneous
graphs satisfy (4), as was shown by Rusinov and Schweitzer in [7]. Until recently,
their examples and unions of equipotent complete graphs were the only known
families of HH-homogeneous graphs with ¬(4).

We don’t know enough about HH-homogeneous graphs to say it more than
tentatively, but the subclass of HH-homogeneous graphs that do not satisfy (4)
may be amenable to classification. In an attempt to eliminate potentially prob-
lematic cases, we decided to test whether an infinite connected graph with ¬(4)
can embed arbitrarily large independent subsets.

It is an easy observation that if G is a countable HH-homogeneous graph
that does not satisfy (4), then the number o(G) = sup{α(N(v)) : v ∈ G}
is finite. As usual, α(G) denotes the independence number of G, or sup{|X| :
X is an independent subset of G}. We don’t know a better short name for o(G),
so we call it the codependence number of G.

An obvious way to produce a countably infinite HH-homogeneous graph with
finite codependence number is to impose a finite bound on the independence num-
ber, since the independence number is an upper bound on the codependence num-
ber. The Rusinov-Schweitzer examples (see [7]) do exactly that. But is it possible
to construct a countably infinite connected graph that does not satisfy (4) and
has infinite independence number? The answer is no.

Theorem 1. Let G be an infinite connected HH-homogeneous graph, and sup-

pose o(G) ∈ N. Then α(G) < 2o(G) +
⌈
o(G)
2

⌉
− 1.

We prove the theorem by contradiction. If G is a graph with sufficiently large
independence number and I is a maximal independent subset witnessing it, then
by maximality of I, the neighbourhood of any vertex outside I contains elements
of I. We call N(v) ∩ I the address of v (if v ∈ I, then {v} is its address).

Each subset S of I of size o(G) defines an infinite HH-homogeneous subgraph of
G with finite independence number, namely the graph induced on R =

⋂
s∈S N(s),

and we can prove under these conditions that the structure of the induced subgraph
of G whose vertex set is the union of I and the elements with address of size o(G) is
closely related to the intersection graph of all subsets of I with o(G) elements. In
particular, R contains two types of triangles, which we use to find two isomorphic
finite subgraphs X and Y such that G contains a vertex x whose neighbourhood
contains X, but for any y ∈ G, the neighbourhood of y does not contain Y . This
contradicts HH-homogeneity, since any isomorphism X → Y is a homomorphism,
but there is no way to extend it to x.

Now we can use Theorem 1 to classify MB-homogeneous graphs.
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The surjectivity of a global extension of a finite monomorphism allows us to
pull back non-edges over the image of a finite homomorphism. More formally, if
X is a finite subset of an MB-homogeneous graph and c 6∼ x for some c /∈ X,
then if f : Y → X is any monomorphism, then we know that the preimage of c
under a global extension of f will satisfy F−1(x) 6∼ F−1(c). We use this technique
to prove that if X is a finite subset of G and X has a co-cone (that is, if there
exists a vertex v /∈ X such that v 6∼ x for each x ∈ X), then there exists an
infinite independent subset of G consisting of co-cones over X. Therefore, any
non-complete MB-homogeneous graph has infinite independence number, and by
Theorem 1 satisfies (4).

A countable graph G is bimorphism-equivalent to the Rado graph iff every finite
subset has a cone and a co-cone in G. A result from [4] states that the class of
MB-homogeneous graphs is closed under complements, so if both G and Ḡ are
connected, then we get bimorphism-equivalence to the Rado graph. Thus, we
concentrate on disconnected MB-homogeneous graphs, omitting the obvious Kω.

Lemma 2. If G is a non-complete countably infinite connected MB-homo-
geneous in which some finite subset has no co-cones, then it is isomorphic to
ω ×Kω.

This suffices to classify MB-homogeneous graphs up to bimorphism-equivalence.

Theorem 3. Let G be a countable MB-homogeneous graph. Then G is bi-
morphism-equivalent to one of the following or its complement:

1. Kω,
2. ω ×Kω,
3. The Rado graph R.

We originally studied the independence number of HH-homogeneous graphs be-
cause we were trying to classify the countably infinite connected HH-homogeneous
graphs that do not satisfy (4). A persistent annoyance is the relative dearth of ex-
amples. The only HH-homogeneous graphs in the literature are unions of cliques,
graphs with (4), and the Rusinov-Schweitzer examples, so testing hypotheses is
slow. This list of examples is heavily skewed towards (4) and a positive but min-
imal α(G) − o(G). A simple modification of the Rusinov-Schweitzer construction
allows us to produce new graphs where the difference α(G)− o(G) is larger.

The original construction for a graph with ¬(4) is as follows: leg In be an
independent set on n ≥ 3 vertices. For each subset S of I of size n − 1, add an
infinite clique KS of new vertices. The vertices of KS contain S and KS′ in their
neighbourhood, for any S′ 6= S. A shorter description is: given n ≥ 3, let Gn be
the complement of the disjoint union of n copies of K1,ω. A simple modification
of the Rusinov-Schweitzer construction (in which we consider subsets of I of size
o < |I|) tells us that we can push the codependence number down at least to

⌈
α
2

⌉
.

Proposition 4. For any o ≥ 2 and α with o < α < 2o, the graph RS(α, o) is
HH-homogeneous. On the other hand, RS(2o, o) is not HH-homogeneous.



386 A. ARANDA and D. HARTMAN

Therefore we have for each pair (α, o) that satisfies o < α < 2o an example
of a connected HH-homogeneous graph with ¬(4), independence number α and
codependence number o.

The next question is whether we can produce connected HH-homogeneous
graphs with a given finite codependence number and such that some minimal
finite induced subgraph without a cone is not an independent set. This is also
possible, and yields many examples with α(G) = o(G); no such examples were
known before. For a given graph Z, we will denote the result of carrying out the
Rusinov-Schweitzer construction starting from Z instead of an independent set
by RS(Z). We refer to any finite induced subgraph F without a cone for which
any proper induced subgraph has a cone as a centre of G, even when G is not
HH-homogeneous. In RS(Z), Z is a centre.

In an HH-homogeneous graph with vertices of infinite degree (this is in par-
ticular true of any infinite connected HH-homogeneous graph), if c is a cone over
H, then there exists a cone over H ∪ {c}. This observation implies in particular
that no centre Z of G can contain a vertex of degree |Z| − 1. If we lower the
maximum degree ∆(Z) a little bit more, then we can produce HH-homogeneous
graphs where Z is a centre.

Proposition 5. Suppose that Z is a finite graph on n > 3 vertices with ∆(Z) <
n − 2. Then RS(Z) is an HH-homogeneous graph with α(RS(Z)) = o(RS(Z)) =
α(Z).

We know sufficient conditions that and a “linking” operation that allow us to
produce a HH-homogeneous graph for which the set of induced subgraphs that do
not have a cone is the set of subgraphs containing (homomorphic preimages of)
a graph from a finite list, but such families are hard to find and at this point we
have not produced any example with more than 2 non-isomorphic centres. Let us
call a set of finite graphs {Zi : i ∈ I} admissible if:

1. For any i, j ∈ I and proper P ⊂ Zi, there is no surjective homomorphism
P → Zj .

2. There exists N ∈ N such that α(Zi) ≤ N for all i ∈ I
3. For all i ∈ I, ∆(Zi) ≤ |Zi| − 2

These are all necessary conditions for {Zi : i ∈ ω} to be a set of centers of a
HH-homogeneous graph. At the time of this writing, we have not succeeded in
constructing an HH-homogeneous graph with a given infinite family of centres.
We conjecture:

Conjecture 6. Let (Gi)i∈ω be an admissible family with infinitely many pair-
wise non-isomorphic finite graphs. There is no HH-homogeneous graph with ¬(4)
where the Gi can be embedded as pairwise disjoint centres.

If this conjecture is true, then we can focus on the following problem.

Problem 7. Find an example of a connected HH-homogeneous graph with
infinitely many pairwise non-isomorphic centres with nonempty intersection, or
prove that no such graph exists.
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If no such graphs exist, then the HH-homogeneous graphs with ¬(4) may be
classified (up to some equivalence relation, much weaker than isomorphism) by
their independence number, their codependence number, and a finite family of fi-
nite graphs, namely its minimal (in the partial order by surjective homomorphism)
centres. At the time of this writing, it is not clear that this will be the case, though
we have an argument that almost proves Conjecture 6. Even if classification is not
possible, any advance in this direction will yield interesting graphs.
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