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kkk-HYPERGRAPHS WITH REGULAR

AUTOMORPHISM GROUPS

R. JAJCAY and T. B. JAJCAYOVÁ

Abstract. Regular representations of finite groups, as introduced by Cayley, are

among the most natural permutation representations of finite groups. Thus, the
question which regular representations appear as full automorphism groups of com-

binatorial structures has been addressed and resolved for several classes of struc-

tures, notably for graphs (where they are called Graphical Regular Representations,
GRR’s), digraphs (Digraphical Regular Representations, DRR’s) as well as for hy-

pergraphs allowing for hyperedges of varying sizes. In the present paper, we focus

on k-hypergraphs, which are hypergraphs in which all hyperedges are of the same
size k, and address the question which k-regular hypergraphs possess full automor-

phism groups acting regularly on the vertices. We rely on the concept of a Cayley

hypergraph (defined here) and show that all sufficiently large finite groups admit a
regular representation as the full automorphism group of a 3-hypergraph.

1. Introduction

All the groups considered in our paper are finite, and so are the sets upon which
they act. A transitive action of a group G on a set X is regular if the stabilizer of
any vertex is trivial. The left regular representation of G acting on itself will be
denoted GL = {σg : G→ G | g ∈ G, σg(h) = gh, for all h ∈ G}, and every regular
action of G on a set X is equivalent to the action of GL on G.

Frucht proved in his 1938 paper [3] that every finite group G is isomorphic to
the full automorphism group of some finite graph. However, the actions of these
groups on the vertices of the corresponding graphs are far from being regular (or
even transitive). To address this, the Graphical Regular Representation Problem
(the GRR problem) asks for the classification of finite groups G for which there
exists a graph Γ = (V,E) whose full automorphism group acts regularly on its
vertex set V and is isomorphic to G. Equivalently, the GRR problem asks for
the classification of finite groups G that admit an edge set E ⊆ P2(G) with the
property that the full automorphism group of the graph (G,E) equals GL (we use
the notation Pk(V ) to denote the set of all k-element subsets of V ). Such groups
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are said to admit a GRR and include almost all finite groups with the exception
of abelian groups of exponent at least 3, generalized dicyclic groups, and thirteen
sporadic groups of order not exceeding 32 [12, 4, 5, 9, 10]. In a variation of
this problem, the Digraphical Regular Representation Problem (DRR) addresses
the same question for digraphs with the classification showing that finite groups
admitting DRR’s include all finite groups but Z2

2, Z3
2, Z4

2, Z2
3 and the quaternion

group Q8 [1].
In our paper, we consider k-uniform hypergraphs, (also called k-hypergraphs),

and ask which finite groups G admit a k, 0 ≤ k ≤ |G|, such that there exists a set
of k-hyperedges H ⊆ Pk(G) with the property that the full automorphism group
of the k-hypergraph (G,H) equals GL. The majority of our results concern the
case k = 3; while the case k = 2 is clearly the original GRR problem. The cases
k = 3 and k = 4, however in the much more specialized setting of Steiner triple
and quadruple systems, have also been considered in [8].

The more general case of this question concerning hypergraphs with hyperedges
of varying sizes has already been settled in [6], where it has been shown that a
hypergraph (but not necessarily a k-uniform hypergraph) whose full automorphism
group is equal to the left regular representation GL of G exists for all finite groups
but Z3, Z4, Z5, and Z2

2. The results in [6] rely heavily on the hyperedges being of
varying sizes.

2. Preliminaries

A hypergraph Γ = (V,H) consists of a set V and a collection H of subsets of V . A
hypergraph is said to be k-uniform if all the subsets in H are of the size k, i.e.,
H ⊆ Pk(V ). We will call the elements from H hyperedges, or more specifically,
k-hyperedges of Γ. The automorphism group of a k-hypergraph Γ = (V,H), de-
noted Aut(Γ), is the group of permutations of V that preserve the k-hyperedges,
i.e., permutations ϕ ∈ SymV with the property ϕ(H) ∈ H, for all H ∈ H. A
finite group G admits a regular representation as the full automorphism group of
a k-uniform hypergraph if there exists a set of k-hyperedges H ⊆ Pk(G) for which
Aut(G,H) = GL.

In what follows, we rely on the following lemma that generalizes Sabidussi’s
famous characterization of Cayley graphs [11]. Given a k-subset H of G, HG

denotes the family of k-subsets { gH | g ∈ G}. The proof of this lemma is a
special case of the proof of a slightly more general result proved in [6].

Lemma 2.1 ([6]). Let Γ = (V,H) be a vertex-transitive k-uniform hypergraph.
Then Γ admits a regular subgroup G of the full automorphism group Aut(Γ) if and
only if there exists a family of k-sets Hr ∈ Pk(G), 1 ≤ r ≤ s, all of which contain
1G, such that Γ is isomorphic to (G,

⋃s
r=1H

G
r ).

Lemma 2.1 makes the four special cases k ∈ {0, 1, |G| − 1, |G|} easy to deal
with. For example, if the full automorphism group of a 1-hypergraph (G,H) were
equal to GL, any non-empty set of 1-hyperedges (i.e., hyperedges consisting of a
single vertex) would have to contain {1G}G = {{g} | g ∈ G}, and would therefore
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consist of all 1-element subsets of G. Since the full automorphism groups of both
(G,P1(G)) and (G, ∅) are equal to SymG, and SymG acts regularly on G if and
only if |G| = 1 or |G| = 2, the only groups that can be represented as regular
automorphism groups of a 0- or 1-uniform hypergraph are the groups Sym{1}

∼= Z1

and Sym{1,2}
∼= Z2. Clearly, since Aut(V,H) = Aut(V, {V rH | H ∈ H}) [6], the

same is true for k = |G| − 1 and k = |G|.
The cases k = 2 or k = |G| − 2 are covered by the classification of GRR’s, and

a finite group G can be represented as a full automorphism group of a 2- or a
(|G|−2)-uniform hypergraph if and only of G does admit a GRR. Thus, from now
on, we shall assume 3 ≤ k ≤ |G| − 3.

The case of cyclic groups Zn is a typical example of the kind of results we
are looking for. The groups Z1 and Z2 have trivially a regular representation
via a k-regular hypergraph (for all admissible k’s). On the opposite side, none
of the groups Zn, n ≥ 3, can be regularly represented as the full automorphism
of a k-hypergraph with k ∈ {0, 1, 2, n − 2, n − 1, n}, by the discussion following
Lemma 2.1 and the characterization of groups admitting GRR’s [4, 12]. Moreover,
the groups Zn, n = 3, 4, 5, cannot be regularly represented on any hypergraph
at all [6]. All the remaining cases are covered by the following theorem (the
proof uses hyperedges of two types: {j, j + 1, . . . , j + k − 1} | 1 ≤ j ≤ n} and
{ j, j + 1, . . . , j + k − 2, j + k} | 1 ≤ j ≤ n}).

Theorem 2.2. A cyclic group Zn, n ≥ 6, admits a regular representation on
a k-uniform hypergraph (Zn,H) if and only if 3 ≤ k ≤ n− 3.

3. Cayley hypergraphs

In order to classify finite groups G that allow for the existence of a k-hypergraph
(G,H), k ≥ 3, satisfying Aut(G,H) = GL, we introduce the following generaliza-
tion of Cayley graphs.

Let G be a (finite) group, and let X1, X2, . . . , Xk−1 be subsets of G that do not
contain the identity 1G. The Cayley k-hypergraph

Ck(G;X1, X2, . . . , Xk−1)

is the incidence structure (G,H) with H being the set of all k-subsets of the form

{g, gx1, gx1x2, . . . , gx1x2 . . . xk−1},

g ∈ G, and xi ∈ Xi, for 1 ≤ i ≤ k − 1. Note that we strictly require that the
hyperedges have exactly k vertices in order to be included, i.e., all the group el-
ements g, gx1, gx1x2, . . . , gx1x2 . . . xk−1 must be different. This is equivalent to
saying xixi+1 . . . xj 6= 1, for all 1 ≤ i ≤ j ≤ k − 1. (This requirement may occa-
sionally force H = ∅.) The 2-hypergraph C2(G;X) is the Cayley graph C(G,X),
and in the case when X = X1 = X2 = · · · = Xk−1, the resulting hyperedges
of Ck(G;X,X, . . . ,X) are the sets of vertices corresponding to the k-arcs of the
Cayley graph C(G,X) ([2, Chapter 17]) that contain no repeated vertices.
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4. k-uniform regular representations of non-cyclic groups, k ≥ 3

The automorphism group of a k-hypergraph Ck(G;X1, X2, . . . , Xk−1) should ob-
viously be related to the groups Aut(C(G,Xi)). For instance, since graph auto-
morphisms preserve k-arcs,

Aut(C(G,X)) ≤ Aut(Ck(G;X,X, . . . ,X)).

The next lemma presents sufficient conditions for this inclusion to be an identity.
The girth of a graph Γ = (V, E) is the number of edges in a smallest cycle in Γ.

Lemma 4.1. Let k ≥ 2 be an integer, and C(G,X) be a Cayley graph of girth
g > 2k − 2 and valency |X| > k − 1. Then

Aut(C(G,X)) = Aut(Ck(G;X,X, . . . ,X)).

The proof of this lemma uses the fact that graphs of large girth are locally
isomorphic to trees.

Corollary 4.2. If a finite group G admits a GRR of girth g > 2m − 2 and
valency r, then G can be regularly represented as the full automorphism group of
some k-hypergraph for all 2 ≤ k ≤ min{m, r − 1}.

In particular, any finite group G that admits a GRR of valency at least 4 and
not containing 3- or 4-cycles, admits a 3-uniform regular representation.

The following technical lemma presents a way of avoiding the need for high
girth. A set ∅ 6= X ⊆ G is said to be symmetric if it is closed under inverses, i.e.,
X = X−1 = {x−1 | x ∈ X}. A reduced product x1x2 . . . x` is one that does not
contain a factor followed by its inverse; xi 6= x−1i+1, for 1 ≤ i < `.

Lemma 4.3. Let G be a finite group, X1, X2, . . . Xk−1 be symmetric subsets of
G not containing 1G, |Xi| ≥ k, for all 1 ≤ i ≤ k − 1, and suppose that all reduced
products x1x2 . . . x`, xi ∈ Xi, 1 ≤ ` ≤ k − 1, represent different elements of G.
Then, Aut(Ck(G;X1, X2, . . . , Xk−1)) ≤ Aut(C(G,X1)).

In order to use Corollary 4.2, it is generally to one’s advantage when the valency
of the GRR is large. On the other hand, the next lemma gives the best results
when the valency is small.

Lemma 4.4. Let G be a finite group that is not cyclic and admits a GRR
C(G,X). Then G admits a regular representation as the full automorphism group

of a k-hypergraph for all k ≥ 2 satisfying the inequality
∑k−1

j=1 (|X|+ 1)2j ≤ |G|.
In particular, any finite group G of order greater than or equal to 42 + 44 = 272

that admits a GRR of valency 3 admits a 3-uniform regular representation.

The proof of Lemma 4.4 relies on Lemma 4.3 and a recursive construction of
the generator sets X1, X2, . . . .

The two infinite classes of finite groups that do not admit a GRR are the finite
abelian groups of exponent at least 3 and generalized dicyclic groups. Most of
them allow for a regular representation via a 3-hypergraph.
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Lemma 4.5. Let G be a finite abelian group that contains a cyclic subgroup of
order at least 6 or let G be a finite generalized dicyclic group with a normal abelian
subgroup A of index 2 that contains a cyclic subgroup of order at least 6. Then G
can be regularly represented as the full automorphism group of some 3-hypergraph
on G.

To prove the main result of our paper, we need one more lemma. A generating
set X of a group G is said to be irreducible if no element from X can be omitted
while X remains a generating set for G.

Lemma 4.6. Let G be a finite group that admits an irreducible generating set X
of size at least 4. Then G admits a regular representation as the full automorphism
group of some 3-hypergraph.

Combining the lemmas presented in our paper with the classification of finite
groups contained in [12, 4] yields the main theorem of our paper.

Theorem 4.7. A finite group G that admits neither a GRR nor a regular
representation via a 3-hypergraph must be one of the following groups

Z3, Z4, Z5 and Z2
2,(1)

D3, Q8 and Z3
2,(2)

Z3
4, Z3

5 and D5 × Z5.(3)

We already know that the groups from the list (1) do not admit a regular repre-
sentation via any hypergraph [6]. An exhaustive search run by Martin Mačaj [7]
determined that all finite groups of orders greater than or equal to 6 and smaller
than or equal to 32 but the groups on the list (2) admit a regular representation
via a 3-hypergraph. The groups on (2) admit neither a GRR nor a regular repre-
sentation via a 3-hypergraph [12, 4, 7]. We are currently working on a proof that
all finite groups of order greater than 32 admit a regular representation via a 2-
or a 3-hypergraph. Thus, we believe that we will be able to prove that the only
finite groups that do not admit a regular representation via a 2- or 3-hypergraph
are those on the lists (1) and (2).
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