t-STRONG CLIQUES AND THE DEGREE-DIAMETER PROBLEM

M. ŚLESZYŃSKA-NOWAK and M. DĘBSKI

Abstract

For a graph $G, L(G)^{t}$ is the t-th power of the line graph of G - that is, vertices of $L(G)^{t}$ are edges of G and two edges $e, f \in E(G)$ are adjacent in $L(G)^{t}$ if G contains a path with at most t vertices that starts in a vertex of e and ends in a vertex of f. The t-strong chromatic index of G is the chromatic number of $L(G)^{t}$ and a t-strong clique in G is a clique in $L(G)^{t}$. Finding upper bounds for the t-strong chromatic index and t-strong clique are problems related to two famous problems: the conjecture of Erdős and Nešetřil concerning the strong chromatic index and the degree/diameter problem.

We prove that the size of a t-strong clique in a graph with maximum degree Δ is at most $1.75 \Delta^{t}+O\left(\Delta^{t-1}\right)$, and for bipartite graphs the upper bound is at most $\Delta^{t}+O\left(\Delta^{t-1}\right)$. We also show results for some special classes of graphs: $K_{1, r}$-free graphs and graphs with a large girth.

1. Introduction

Let G be a graph. By $L(G)^{t}$ we denote the t-th power of the line graph of G that is, vertices of $L(G)^{t}$ are edges of G and two edges $e, f \in E(G)$ are adjacent in $L(G)^{t}$ if G contains a path with at most t vertices that starts in a vertex of e and ends in a vertex of f. The t-strong chromatic index of G is the chromatic number of $L(G)^{t}$ and a t-strong clique in G is a clique in $L(G)^{t}$.

The underlying motivation of our research is to determine the extremal value of t-strong chromatic index of a graph with given maximum degree, in the setting where t is treated as a constant and maximum degree is allowed to be arbitrarily large.

Problem 1. Find the smallest constant b_{t} such that for every graph G of sufficiently large maximum degree Δ, the t-strong chromatic index of G is at most $b_{t} \Delta^{t}$.

Problem 1 have been extensively studied for $t=2 .{ }^{1}$ A greedy argument shows that $b_{t} \leq 2$; Erdős and Nešetřil asked in 1985 whether the bound on b_{2} can

[^0]be replaced by $2-\varepsilon$ for any positive $\varepsilon[7]$. Molloy and Reed gave a positive answer in 1997 [14]; recently, it was improved by Bruhn and Joos [3] and Bonamy, Perrett and Postle [2] and the current record in $b_{2} \leq 1.835$. Since the best known construction shows that $b_{2} \geq 1.25$, the problem remains wide open. See $[\mathbf{1 7}]$ for some more specific results and problems regarding bounds on the 2 -strong chromatic index.

Much less is known for $t>2$. Kaiser and Kang proved in 2014 that $b_{t} \leq 2-\varepsilon$ for $\varepsilon \approx 0.00008[\mathbf{1 1}]$, and it remains the best known. On the other hand, there are specific constructions of bipartite graphs witnessing that $b_{3}, b_{4}, b_{6} \geq 1$, but the general lower bound on b_{t} goes to 0 with t goes to infinity.

In this paper we focus on a relaxation of Problem 1, where the t-strong chromatic index is replaced by the size of a maximum t-strong clique.

Problem 2. Find the smallest constant c_{t} such that for every graph G of sufficiently large maximum degree Δ, the maximum size of a t-strong clique in G is at most $c_{t} \Delta^{t}$.

It is not clear how close to each other are solutions of Problems 1 and 2. The size of a maximum t-strong clique can be much smaller than the t-strong chromatic index for some graphs, but it may not be the case with their extremal values. In fact, the best known lower bounds for b_{t} come from constructions of t-strong cliques, i.e. the same lower bound holds for c_{t}.

Problem 2 have already been studied for $t=2[8,18]$; we know that $c_{2} \leq \frac{4}{3}$ (recall that $b_{2} \leq 1.835$). We are not aware of any nontrivial upper bounds for $t>2$.

Our topic has somewhat similar flavor to the degree/diameter problem, that asks for the maximum possible number $n_{\Delta, D}$ of vertices in a graph of maximum degree Δ and diameter D (i.e. we restrict our attention to line graphs, but require the t-th power only to contain a clique, instead of being a clique). Clearly $n_{\Delta, D} \leq$ $(1+o(1)) \Delta^{D}$, but it is immensely difficult to either improve this upper bound by more than an additive constant or give a lower bound tight up to a multiplicative constant; see a survey by Miller and Širáň [13].

This connection provides us with an improved lower bound on c_{t} and b_{t}. The authors in [11] refer to Proposition 1 from [12] as the best known lower bound; it says that $b_{t} \geq \frac{1}{2(t-1)^{t-1}}$. However, we have $c_{t} \geq \frac{1}{2} \lim \sup \frac{n_{\Delta, t-1}}{\Delta^{t-1}}$ (to see this, take a graph with maximum degree Δ, diameter $t-1$ and $n_{\Delta, t-1}$ vertices, add edges so that almost every vertex has degree Δ, and note that edge set of the resulting graph forms a t-strong clique of order $\left.\frac{1}{2} \Delta n_{\Delta, t-1}\right)$. Together with the result of Canale and Gómez, that $n_{\Delta, D} \geq\left(\frac{\Delta}{(1.59)}\right)^{D}$ for sufficiently large D and infinitely many values of $\Delta[4]$, it implies that for sufficiently large $t, c_{t} \geq \frac{1}{2}\left(\frac{1}{1.59}\right)^{t-1}$.

Our main contribution is an upper bound of 1.75 on c_{t}.
Theorem 3. Let G be a graph with maximum degree Δ. For every $t \geq 2$, the size of a t-strong clique in G is at most $1.75 \Delta^{t}+O\left(\Delta^{t-1}\right)$.

We also improve the constant to 1 for bipartite graphs. Recall that for $t=3,4,6$ it matches known lower bounds, that are attained from constructions of bipartite graphs. It is also generalization of the earlier result for $t=2$ [9].

Theorem 4. Let G be a bipartite graph with maximum degree Δ. For every $t \geq 2$, the size of a t-strong clique in G is at most $\Delta^{t}+O\left(\Delta^{t-1}\right)$.

Theorems 3 and 4 bound the size of a t-strong clique by an absolute constant times Δ^{t}. For claw-free graphs, and $K_{1, r}$-free graphs in general, we can prove a bound with the constant that goes to 0 with t goes to infinity. An analogous result holds for the degree/diameter problem [6].

Proposition 5. Let G be $K_{1, r}$-free graph with maximum degree Δ. For every $t \geq 2$, the size of a t-strong clique in G is at most $2\left(\frac{r-2}{r-1}\right)^{t-2} \Delta^{t}+O\left(\Delta^{t-1}\right)$.

The t-strong chromatic index drops down to $O\left(\frac{\Delta^{t}}{\log \Delta}\right)$ in graphs of girth at least $2 t+1$. This is tight up to a multiplicative constant (dependent on t), because there are graph of arbitrarily large girth and t-strong chromatic index at least $\Theta\left(\frac{\Delta^{t}}{t \log \Delta}\right)$; see [11, Theorem 1.2 and Proposition 1.3]. We prove that for t-strong cliques, this drop is more steep: graph of girth $2 t+1$ have t-strong cliques of size at most $O\left(\Delta^{t-1}\right)$ (it is also a consequence of [11, Lemma 3.1]) and whenever the bound on girth is increased by 2 , the order of magnitude decreases by Δ.

Theorem 6. Let G be a graph with maximum degree Δ and girth at least $2 t+2 x+1$, for $t \geq 2$ and $0 \leq x \leq\left\lfloor\frac{t}{2}\right\rfloor-1$. The size of a t-strong clique in G is at most $2^{t+2} \Delta^{t-x-1}$.

2. Final remarks

Theorem 3 is probably not tight. In fact, we do not know if it is even tight up a multiplicative constant - known lower bound on c_{t} goes to 0 with t goes to infinity. However, recall that $c_{t} \geq \frac{1}{2} \limsup _{\Delta \rightarrow \infty} \frac{n_{\Delta, t-1}}{\Delta^{t-1}}$; it implies that a proof that c_{t} is strictly smaller than $\frac{1}{2}$ for large t would yield a huge breakthrough in the degree/diameter problem.

A similar remark applies for claw-free graphs - Proposition 5 is certainly not tight, but improving it by a factor of more than 16 for claw-free graphs would imply the same breakthrough for general graphs; it is demonstrated by the following proposition.

Proposition 7. Let c be a constant such that for every sufficiently large Δ and t, a t-strong clique in a claw-free graph of maximum degree Δ has less than $c \frac{1}{2^{t}} \Delta^{t}$ edges. Then, for every sufficiently large Δ and $t, n_{\Delta, t}<2 c \Delta^{t}+3 c \Delta^{t-1}+\Delta$.

Proof. It suffices show that if there exists a graph G with maximum degree Δ, diameter t and at least $2 c \Delta^{t}+3 c \Delta^{t-1}+\Delta$ vertices, then there exists a triangle free graph H with maximum degree Δ^{\prime} that contains a strong clique of size $c \frac{1}{2^{t^{\prime}}} \Delta^{\prime t^{\prime}}$, for $\Delta^{\prime}=2 \Delta$ and $t^{\prime}=t+2$.

Let G be such graph. Let G^{\prime} be a maximal supergraph of G with maximum degree Δ and the same set of vertices. We claim that G^{\prime} has at least $2 c \Delta^{t}+3 c \Delta^{t-1}$ vertices of degree Δ. Indeed, by maximality, every two vertices of degree less than Δ are adjacent in G^{\prime} and, since their degree is at most $\Delta-1$, there are at most Δ of them.

Let H be the line graph of G^{\prime}. As such, H is claw-free and has maximum degree at most $\Delta^{\prime}=2 \Delta$. Moreover, the diameter of H is at most $t+1$; it follows that all edges of H form a $(t+2)$-strong clique. Note that each vertex of degree Δ in G^{\prime} corresponds to $\binom{\Delta}{2}$ edges of H. Therefore, the number of edges of H is at least $\left(2 c \Delta^{t}+3 c \Delta^{t-1}\right)\binom{\Delta}{2}$. For $\Delta>2$ it is at least $c \Delta^{t+2}$, which equals to $c \frac{1}{2^{t^{\prime}}} \Delta^{\prime t^{\prime}}$, as desired.

We would like to know, how close to optimal is Theorem 6. The constant 2^{t+2} is clearly overestimated, but we suspect that the order of magnitude may be correct - it is clearly correct for $x=\left\lfloor\frac{t}{2}\right\rfloor-1$ (as demonstrated by a regular tree of diameter $t+1$, with either one or two centres, depending on the parity of t). For smaller x we do not know, as we are generally unable to construct graphs with large girth and large t-strong clique. We feel that a construction matching the order of magnitude from Theorem 6 would be very informative, even for $x=\left\lfloor\frac{t}{2}\right\rfloor-2$, and leave it as an open problem.

Theorem 3 would imply that $b_{t} \leq 1.875$ if Reed's conjecture was true [16], and gives a fractional result with this constant by the fractional version of Reed's conjecture, shown to be true [15, Theorem 21.7]. However, considering the apparent hardness of Reed's conjecture, we think that a more promising way of obtaining some progress in Problem 1 would be to rely on bounding the number of edges in a vertex neighborhood in $L(G)^{t}$; this strategy yielded aforementioned results for $t=2$.

Throughout this paper we always assumed that the maximum degree Δ is large enough, disregarding small cases. However, the problem of bounding the 2-strong chromatic index is remains interesting for smaller Δ (see $[\mathbf{1}, \mathbf{5}, \mathbf{1 0}]$), and so would be bounding t-strong chromatic index and t-strong cliques.

References

1. Andersen L. D., The strong chromatic index of a cubic graph is at most 10, Discrete Math. 108 (1992), 231-252.
2. Bonamy M., Perrett T. and Postle L., Colouring graphs with sparse neighbourhoods: Bounds and applications, arxiv:1810.06704
3. Bruhn H. and Joos F., A stronger bound for the strong chromatic index, Electron. Notes Discrete Math. 49 (2015), 277-284.
4. Canale E. A. and Gómez J., Asymptotically large (Δ, D)-graphs, Discrete Appl. Math. 152 (2005), 89-108.
5. Cranston D. W., Strong edge-coloring of graphs with maximum degree 4 using 22 colors, Discrete Math. 306 (2006), 2772-2778.
6. Dankelmann P. and Vetrík T., The degree-diameter problem for claw-free graphs and hypergraphs, J. Graph Theory 75 (2014), 105-123.
7. Erdős P. and Nešetřil J., Problem, in: Irregularities of Partitions (G. Halász, V.T. Sós, eds.), Springer, 1989, 162-163.
8. Faron M. and Postle L., On the clique number of the square of a line graph and its relation to maximum degree of the line graph, J. Graph Theory (2019), https://doi.org/10.1002/ jgt. 22452.
9. Faudree R. J., Gyárfás A., Schelp R. H. and Tuza Zs., Induced matchings in bipartite graphs, Discrete Math. 78 (1989), 83-87.
10. Huang M., Santana M. and Yu G., The strong chromatic index of graphs with maximum degree four is at most 21, Electron. J. Combin. 25 (2018), \#P3.31.
11. Kaiser T. and Kang R. J., The distance-t chromatic index of graphs, Combin. Probab. Comput. 23 (2014), 90-101.
12. Kang R. J. and Manggala P., Distance edge-colourings and matchings, Discrete Appl. Math. 160 (2012), 2435-2439.
13. Miller M. and Širáň J., Moore graphs and beyond: A survey of the degree/diameter problem, Electron. J. Combin. 20 (2013), Dynamic survey: DS14.
14. Molloy M. and Reed B., A bound on the strong chromatic index of a graph, J. Combin. Theory Ser. B 69 (1997), 103-109.
15. Molloy M. and Reed B., Graph Colouring and the Probabilistic Method, Springer, Berlin, 2002.
16. Reed B., ω, Δ and χ, J. Graph Theory 27 (1998), 177-212.
17. West D. B., Strong Edge-Coloring, https://faculty.math.illinois.edu/~west/openp/ strongedge.html.
18. Śleszyńska-Nowak M., Clique number of the square of a line graph, Discrete Math. 339 (2016), 1551-1556.
M. Śleszyńska-Nowak, Faculty of Mathematics and Information Sciences, Warsaw University of Technology, Warszawa, Poland,
e-mail: m.sleszynska@mini.pw.edu.pl
M. Dębski, Faculty of Informatics, Masaryk University, Brno, Czech Republic;

Faculty of Mathematics and Information Sciences, Warsaw University of Technology, Warszawa, Poland,
e-mail: michal.debski87@gmail.com

[^0]: Received June 5, 2019.
 2010 Mathematics Subject Classification. Primary 05C15, 05C12, 05C69.
 Research was supported by the Polish National Science Center, decision no DEC2017/25/N/ST1/00459.
 $1_{2 \text {-strong chromatic index is commonly known as strong chromatic index; we refrain from using }}$ this term for consistency.

