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ttt-STRONG CLIQUES AND
THE DEGREE-DIAMETER PROBLEM

M. ŚLESZYŃSKA-NOWAK and M. DĘBSKI

Abstract. For a graph G, L(G)t is the t-th power of the line graph of G – that is,
vertices of L(G)t are edges of G and two edges e, f ∈ E(G) are adjacent in L(G)t

if G contains a path with at most t vertices that starts in a vertex of e and ends
in a vertex of f . The t-strong chromatic index of G is the chromatic number of
L(G)t and a t-strong clique in G is a clique in L(G)t. Finding upper bounds for
the t-strong chromatic index and t-strong clique are problems related to two famous
problems: the conjecture of Erdős and Nešetřil concerning the strong chromatic
index and the degree/diameter problem.

We prove that the size of a t-strong clique in a graph with maximum degree ∆

is at most 1.75∆t +O
(
∆t−1

)
, and for bipartite graphs the upper bound is at most

∆t + O
(
∆t−1

)
. We also show results for some special classes of graphs: K1,r-free

graphs and graphs with a large girth.

1. Introduction

Let G be a graph. By L(G)t we denote the t-th power of the line graph of G –
that is, vertices of L(G)t are edges of G and two edges e, f ∈ E(G) are adjacent in
L(G)t if G contains a path with at most t vertices that starts in a vertex of e and
ends in a vertex of f . The t-strong chromatic index of G is the chromatic number
of L(G)t and a t-strong clique in G is a clique in L(G)t.

The underlying motivation of our research is to determine the extremal value
of t-strong chromatic index of a graph with given maximum degree, in the setting
where t is treated as a constant and maximum degree is allowed to be arbitrarily
large.

Problem 1. Find the smallest constant bt such that for every graph G of
sufficiently large maximum degree ∆, the t-strong chromatic index of G is at most
bt∆

t.

Problem 1 have been extensively studied for t = 2.1 A greedy argument shows
that bt ≤ 2; Erdős and Nešetřil asked in 1985 whether the bound on b2 can
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be replaced by 2 − ε for any positive ε [7]. Molloy and Reed gave a positive
answer in 1997 [14]; recently, it was improved by Bruhn and Joos [3] and Bonamy,
Perrett and Postle [2] and the current record in b2 ≤ 1.835. Since the best known
construction shows that b2 ≥ 1.25, the problem remains wide open. See [17]
for some more specific results and problems regarding bounds on the 2-strong
chromatic index.

Much less is known for t > 2. Kaiser and Kang proved in 2014 that bt ≤ 2− ε
for ε ≈ 0.00008 [11], and it remains the best known. On the other hand, there
are specific constructions of bipartite graphs witnessing that b3, b4, b6 ≥ 1, but the
general lower bound on bt goes to 0 with t goes to infinity.

In this paper we focus on a relaxation of Problem 1, where the t-strong chro-
matic index is replaced by the size of a maximum t-strong clique.

Problem 2. Find the smallest constant ct such that for every graph G of
sufficiently large maximum degree ∆, the maximum size of a t-strong clique in G
is at most ct∆t.

It is not clear how close to each other are solutions of Problems 1 and 2. The size
of a maximum t-strong clique can be much smaller than the t-strong chromatic
index for some graphs, but it may not be the case with their extremal values.
In fact, the best known lower bounds for bt come from constructions of t-strong
cliques, i.e. the same lower bound holds for ct.

Problem 2 have already been studied for t = 2 [8, 18]; we know that c2 ≤ 4
3

(recall that b2 ≤ 1.835). We are not aware of any nontrivial upper bounds for
t > 2.

Our topic has somewhat similar flavor to the degree/diameter problem, that
asks for the maximum possible number n∆,D of vertices in a graph of maximum
degree ∆ and diameter D (i.e. we restrict our attention to line graphs, but require
the t-th power only to contain a clique, instead of being a clique). Clearly n∆,D ≤
(1 + o(1))∆D, but it is immensely difficult to either improve this upper bound by
more than an additive constant or give a lower bound tight up to a multiplicative
constant; see a survey by Miller and Širáň [13].

This connection provides us with an improved lower bound on ct and bt. The
authors in [11] refer to Proposition 1 from [12] as the best known lower bound; it
says that bt ≥ 1

2(t−1)t−1 . However, we have ct ≥ 1
2 lim sup

∆→∞

n∆,t−1

∆t−1 (to see this, take

a graph with maximum degree ∆, diameter t − 1 and n∆,t−1 vertices, add edges
so that almost every vertex has degree ∆, and note that edge set of the resulting
graph forms a t-strong clique of order 1

2∆n∆,t−1). Together with the result of

Canale and Gómez, that n∆,D ≥
(

∆
(1.59)

)D

for sufficiently large D and infinitely

many values of ∆ [4], it implies that for sufficiently large t, ct ≥ 1
2

(
1

1.59

)t−1.
Our main contribution is an upper bound of 1.75 on ct.

Theorem 3. Let G be a graph with maximum degree ∆. For every t ≥ 2, the
size of a t-strong clique in G is at most 1.75∆t + O

(
∆t−1

)
.
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We also improve the constant to 1 for bipartite graphs. Recall that for t = 3, 4, 6
it matches known lower bounds, that are attained from constructions of bipartite
graphs. It is also generalization of the earlier result for t = 2 [9].

Theorem 4. Let G be a bipartite graph with maximum degree ∆. For every
t ≥ 2, the size of a t-strong clique in G is at most ∆t + O

(
∆t−1

)
.

Theorems 3 and 4 bound the size of a t-strong clique by an absolute constant
times ∆t. For claw-free graphs, and K1,r-free graphs in general, we can prove a
bound with the constant that goes to 0 with t goes to infinity. An analogous result
holds for the degree/diameter problem [6].

Proposition 5. Let G be K1,r-free graph with maximum degree ∆. For every

t ≥ 2, the size of a t-strong clique in G is at most 2
(

r−2
r−1

)t−2

∆t + O
(
∆t−1

)
.

The t-strong chromatic index drops down to O
(

∆t

log ∆

)
in graphs of girth at least

2t + 1. This is tight up to a multiplicative constant (dependent on t), because
there are graph of arbitrarily large girth and t-strong chromatic index at least
Θ
(

∆t

t log ∆

)
; see [11, Theorem 1.2 and Proposition 1.3]. We prove that for t-strong

cliques, this drop is more steep: graph of girth 2t + 1 have t-strong cliques of size
at most O

(
∆t−1

)
(it is also a consequence of [11, Lemma 3.1]) and whenever the

bound on girth is increased by 2, the order of magnitude decreases by ∆.

Theorem 6. Let G be a graph with maximum degree ∆ and girth at least
2t + 2x + 1, for t ≥ 2 and 0 ≤ x ≤

⌊
t
2

⌋
− 1. The size of a t-strong clique in G is

at most 2t+2∆t−x−1.

2. Final remarks

Theorem 3 is probably not tight. In fact, we do not know if it is even tight up a
multiplicative constant – known lower bound on ct goes to 0 with t goes to infinity.
However, recall that ct ≥ 1

2 lim sup
∆→∞

n∆,t−1

∆t−1 ; it implies that a proof that ct is strictly

smaller than 1
2 for large t would yield a huge breakthrough in the degree/diameter

problem.
A similar remark applies for claw-free graphs – Proposition 5 is certainly not

tight, but improving it by a factor of more than 16 for claw-free graphs would imply
the same breakthrough for general graphs; it is demonstrated by the following
proposition.

Proposition 7. Let c be a constant such that for every sufficiently large ∆ and
t, a t-strong clique in a claw-free graph of maximum degree ∆ has less than c 1

2t ∆t

edges. Then, for every sufficiently large ∆ and t, n∆,t < 2c∆t + 3c∆t−1 + ∆.

Proof. It suffices show that if there exists a graph G with maximum degree ∆,
diameter t and at least 2c∆t+3c∆t−1 +∆ vertices, then there exists a triangle free
graph H with maximum degree ∆′ that contains a strong clique of size c 1

2t′∆
′t′ ,

for ∆′ = 2∆ and t′ = t + 2.
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Let G be such graph. Let G′ be a maximal supergraph of G with maximum
degree ∆ and the same set of vertices. We claim that G′ has at least 2c∆t+3c∆t−1

vertices of degree ∆. Indeed, by maximality, every two vertices of degree less than
∆ are adjacent in G′ and, since their degree is at most ∆ − 1, there are at most
∆ of them.

Let H be the line graph of G′. As such, H is claw-free and has maximum degree
at most ∆′ = 2∆. Moreover, the diameter of H is at most t+ 1; it follows that all
edges of H form a (t + 2)-strong clique. Note that each vertex of degree ∆ in G′

corresponds to
(

∆
2

)
edges of H. Therefore, the number of edges of H is at least(

2c∆t + 3c∆t−1
) (

∆
2

)
. For ∆ > 2 it is at least c∆t+2, which equals to c 1

2t′∆
′t′ , as

desired. �

We would like to know, how close to optimal is Theorem 6. The constant 2t+2 is
clearly overestimated, but we suspect that the order of magnitude may be correct
– it is clearly correct for x =

⌊
t
2

⌋
−1 (as demonstrated by a regular tree of diameter

t+1, with either one or two centres, depending on the parity of t). For smaller x we
do not know, as we are generally unable to construct graphs with large girth and
large t-strong clique. We feel that a construction matching the order of magnitude
from Theorem 6 would be very informative, even for x =

⌊
t
2

⌋
− 2, and leave it as

an open problem.
Theorem 3 would imply that bt ≤ 1.875 if Reed’s conjecture was true [16], and

gives a fractional result with this constant by the fractional version of Reed’s con-
jecture, shown to be true [15, Theorem 21.7]. However, considering the apparent
hardness of Reed’s conjecture, we think that a more promising way of obtaining
some progress in Problem 1 would be to rely on bounding the number of edges in
a vertex neighborhood in L(G)t; this strategy yielded aforementioned results for
t = 2.

Throughout this paper we always assumed that the maximum degree ∆ is large
enough, disregarding small cases. However, the problem of bounding the 2-strong
chromatic index is remains interesting for smaller ∆ (see [1, 5, 10]), and so would
be bounding t-strong chromatic index and t-strong cliques.
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