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RAMSEY PROPERTIES OF EDGE-LABELLED GRAPHS

VIA COMPLETIONS

J. HUBIČKA, M. KONEČNÝ and J. NEŠETŘIL

Abstract. Motivated by applications in structural Ramsey theory, we describe

“metric-like” classes of edge-labelled graphs, study their completion problems and

find Ramsey expansions. They turn out to be general enough to incorporate most
of the known Ramsey results for edge-labelled graphs under a common framework

and also solve a problem of Conant on generalised metric spaces. As a corollary of

understanding completions, one obtains homomorphism dualities for these classes.

In this note we review the correspondence between completions, structural Ram-
sey theory, homomorphism dualities and the constraint satisfaction problem. We
apply this correspondence on certain classes of edge-labelled graphs, study their
completions and as a result get a rich spectrum of Ramsey examples containing
many of the previous results under one framework. We apply this to solve a
problem of Conant on EPPA of generalised metric spaces [5].

Let L be a set. An L-edge-labelled graph is a tuple G = (G,E, d), where (G,E)
is a (simple undirected) graph and d is a function E → L. We will write d(x, y)
for d({x, y}) and implicitly assume symmetry. Since E can be inferred from the
domain of d, we will often treat edge-labelled graphs only as pairs (G, d). Unless
explicitly stated otherwise, we only consider finite graphs

Let A = (A, d) and B = (B, d′) be L-edge-labelled graphs and let f : A → B
be a function. We say that f is a (label-preserving) homomorphism if d(x, y) = `
implies that d′(f(x), f(y)) = ` (so, in particular, {f(x), f(y)} is an edge of B). We
will write f : A → B to emphasize that f respects the structure. Note that if L
is a singleton set, we get the standard notion of homomorphism for graphs. Also
note that if A and B are complete edge-labelled graphs, then homomorphisms
coincide with the model-theoretic notion of embedding.

If A is an L-edge-labelled graph and B is a complete L-edge-labelled graph
such that there is a homomorphism f : A → B, we say that B is a completion of
A. If f is injective, we call B a strong completion of A.

The concept of completions (which was defined in [11] for general structures)
generalises many combinatorial problems and is interesting on its own. For exam-
ple, asking whether the complete graph on 3 vertices is a completion of a graph
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is the same as asking whether a graph is 3-colourable. More generally, asking for
the existence of a completion is an instance of the constraint satisfaction problem
(CSP).

Example 1 (Motivating example). Let L be the set of all positive integers
and let C be the class of all complete L-edge-labelled graphs which contain no
non-metric triangles, that is, triangles with labels a, b, c such that a > b + c. In
other words, C can be viewed as the class of all finite metric spaces with integer
distances (d(x, x) = 0 is understood implicitly).

A connected L-edge-labelled graph A = (A, d) has a completion B ∈ C if and
only if A contains no non-metric cycle (that is, a (non-induced) cycle with distances

a0, a1, . . . , an such that a0 >
∑n

i=1 ai), because one can put d′ :
(
A
2

)
→ L to be

the path metric, that is, d′(x, y) is the minimum length (sum of labels) among all
paths between x and y in A, and put B = (A, d′). Note that B is in fact a strong
completion and furthermore Aut(B) = Aut(A).

Note that in the example, we in fact proved the following: Put O to be the
class of all non-metric cycles. Then for every L-edge-labelled graph A we have

O 9 A ⇐⇒ A→ C,

where by O 9 A we mean that there is no homomorphism from any O ∈ O to A
and by A → C we mean that there is B ∈ C and a homomorphism A → B.
This means that (O, C) is a homomorphism duality. They have been studied
before, in particular Nešetřil and Tadrif [14] classified homomorphism dualities
for C containing a single finite structure; for more see [7].

We will study edge-labelled graphs from the point of view of structural Ramsey
theory: A class C of complete L-edge-labelled graphs is Ramsey if for every A,B ∈
C there is C ∈ C such that for every 2-colouring of

(
C
A

)
there is a copy B0 ∈

(
C
B

)
such that

(
B0

A

)
is monochromatic, where by

(
U
V

)
we mean the set of all induced

subgraphs of U isomorphic to V.
Hubička and Nešetřil [11] gave the presently strongest abstract condition for

a class to be Ramsey which roughly says that understanding completions (and
obstacles to completions) is very close to understanding Ramsey properties. In
particular, if C is a strong amalgamation class of complete edge-labelled graphs
such that there is a homomorphism-duality (O, C) with O finite, then the class of
all linearly ordered graphs from C is Ramsey.

We study the completion problem via a variant of the path metric. The classes of
our interest are classes of complete edge-labelled graphs determined by forbidding
some edge-labelled triangles. We give explicit conditions on the sets of forbidden
triangles for these classes to admit a variant of the path metric completion and
apply these results to classify the obstacles (such as non-metric cycles), get a
Ramsey expansion and some other combinatorial properties. Quite surprisingly,
our classes can be seen as generalised metric spaces where the distances come from
a partially ordered commutative semigroup. The following definitions generalise
several existing concepts [5, 3], see [12].
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Definition 1. A partially ordered commutative semigroup is a tuple M =
(M,⊕,�) where ⊕ is a commutative and associative binary operation on M ,
(M,�) is a partial order and for every a, b, c ∈ M it holds that a � a ⊕ b, and if
b � c then a⊕ b � a⊕ c.

We say that an M-edge-labelled triangle is non-metric if the labels are a, b and c
and it holds that a 6� b⊕c. More generally, we say that an M-edge-labelled cycle is
a non-M-metric cycle if it has distances a0, a1, . . . , ak such that a0 6� a1⊕· · ·⊕ak.
We say that an M-edge-labelled graph is an M-metric space if it contains no
non-metric triangles.

For example, the (R>0,+,≤)-metric spaces are the standard metric spaces. A
very different example are the “divisibility spaces”, that is, (N≥1, ·, |), where by |
we mean the “is a divisor of” relation.

For an M-edge-labelled path P, we denote by ‖P‖ the ⊕-sum of the labels of
edges of P and call it the M-length of P. Using this, one can define the M-path
metric:

Definition 2. Let M be a partially ordered commutative semigroup and let
A = (A, d) be an M-edge-labelled graph. We define d′ :

(
A
2

)
→M by

d′(x, y) = inf�{‖P‖ : P is a path between x and y in A}
and call it the M-path metric of A. (If some of the infima are undefined, we let
d′ be undefined.)

Motivated by applications, we know that requiring � to be a lattice would be
too strong a condition. Instead, we consider classes of M-metric spaces which omit
homomorphic images of M-edge-labelled cycles from some well-behaved family F
satisfying several conditions which will be given precisely in the full version of
this paper [12, 9]. These conditions in particular ensure that the M-path metric
is always defined for graphs omitting homomorphisms from F and that A omits
homomorphisms from F and non-M-metric cycles if and only if its M-path metric
does. Moreover, the conditions are explicit and can be directly checked given such
a family F .

In the following paragraphs, we will denote by MFM the class of all finite
M-metric spaces containing no triangles from F , where M is a partially ordered
commutative semigroup and F is a well-behaved family. We remark that the
conditions of F imply that in fact MFM omits homomorphic images from F .

We prove the following theorem:

Theorem 1. A connected M-edge-labelled graph A has a completion in MFM
if and only if it contains no (homomorphic image of a) non-M-metric cycle and
no homomorphic image of a member of F .

Moreover, the M-path metric of A is a strong completion of A which preserves
all automorphisms of A.

A partially ordered commutative semigroup M is archimedean if for every a, b ∈
M there is an integer n such that n× a � b (where by n× a we mean the ⊕-sum
of n copies of a). For archimedean semigroups, we can then prove
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Theorem 2. The class of all linearly ordered graphs from MFM is Ramsey
provided that M is archimedean and for every finite S ⊆M there are only finitely
many S-edge-labelled cycles in F .

For non-archimedean semigroups the situation is more complicated and the
Ramsey expansion consists of several partial orders as in [3].

A class C of structures has the extension property for partial automorphisms
(EPPA) if for every A ∈ C there is B ∈ C containing A as a substructure (i.e.
induced subgraph with labels preserved) such that every isomorphism of two finite
substructures of A extends to an automorphism of B. EPPA was introduced by
Hrushovski [8] who proved it for the class of all graphs and has been studied since,
see e.g. [16]. Using a recent general result of the authors on EPPA [10], we can
also prove it for M-metric spaces, thereby answering a question of Conant [5].

Theorem 3. MFM has EPPA provided that for every finite S ⊆ M there are
only finitely many S-edge-labelled cycles in F .

We also get the following corollary of Theorem 1.

Corollary 4. There is a finite family O of M-edge-labelled cycles such that
(O,MFM) is a homomorphism duality provided that M is finite and archimedean
and F is finite.

It was observed by Nešetřil [13] that under mild (and natural) assumptions,
every Ramsey class is a so-called amalgamation class. By the Fräıssé theorem [6],
amalgamation classes (with at most countable L) correspond to countable homoge-
neous L-edge-labelled graphs – their Fräıssé limits – (here an edge-labelled graph
A is homogeneous if every isomorphism of finite substructures of A extends to an
automorphism of A) and vice versa. This means that if we let F be the Fräıssé
limit ofMFM from Corollary 4, the constraint satisfaction problem for F is solvable
in polynomial time, see [2].

Rather surprisingly, the classesMFM are very rich and contain many previously
studied examples such as S-metric spaces [15, 11], Λ-ultrametric spaces [3] or
primitive metrically homogeneous graphs [4, 1]. We thus get a general framework
containing all the aforementioned results (and solving some open questions such
as EPPA for S-metric spaces) and giving new insights into the combinatorics of
many homogeneous edge-labelled graphs (for example, in an ongoing collaboration
with Evans and Li we are trying to prove that the automorphism groups of the
Fräıssé limits for classes with finite archimedean M are simple).

This motivates the following conjecture:

Conjecture 5. Let A be a (countable) homogeneous L-edge-labelled graph
with finite L such that the class of all finite substructures of A is determined by
a finite set of forbidden triangles and A is primitive (that is, Aut(A) fixes no
non-trivial partition of its vertices). Then A is isomorphic to the Fräıssé limit of
some MFM.

A very non-trivial example where this conjecture holds are the primitive met-
rically homogeneous graphs, see [12, Chapter 6.1]. Non-examples motivating the
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extra conditions are bipartite graphs or affinely independent Euclidean metric
spaces.
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