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QUASI-MODULAR PSEUDOCOMPLEMENTED SEMILATTICES

S. EL ASSAR, M. ATALLAH and E. ATEF

Abstract. P. Mederly [7] characterized the modular pseudocomplemented semi-
lattices in terms of triples. We show that a similar result is possible for the class of

quasi-modular pseudocomplemented semilattices, which is an extension of the class
of modular pseudocomplemented semilattices.

1. Introduction

The triple method is one of the methods used to study structures with pseudo-
complementation. The basic idea is to associate with such a structure two simpler
structures (Boolean algebra and a semilattice with unit) and a connecting mapping
between them, forming a triple.

In this paper, after some preliminary considerations and introducing the quasi-
modular pseudocomplemented semilattices, we characterize the triples associated
with these algebras. In the last section, we characterize homomorphisms and
congruences of quasi-modular pseudocomplemented semilattices in terms of triples.

2. Preliminaries

A pseudocomplemented semilattice (PCS) is an algebra 〈S,∧,∗ , 0, 1〉 of type
(2, 1, 0, 0), where 〈S,∧, 0, 1〉 is a bounded meet semilattice and for every a ∈ S,
the element a∗ is the pseudocomplement of a, i.e.,

x ≤ a∗ iff x ∧ a = 0.

If a PCS S forms a lattice, then it is said to be a pseudocomplemented lattice
(PCL or p-algebra).

Let S be a PCS. The element a ∈ S is called closed if a = a∗∗. B(S) denotes
the set of all closed elements of S. It is known that 〈B(S),Y,∧,∗ , 0, 1〉 forms a
Boolean algebra with a Y b = (a∗ ∧ b∗)∗. The element d ∈ S is said to be dense
if d∗ = 0. D(S) is the set of all dense elements of S. It is clear that 1 is a dense
element and D(S) forms a filter of S.
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Let F be a filter of a semilattice S. By Θ(F ) we mean a binary relation on S
defined as: a ≡ bΘ(F ) if and only if a ∧ v = b ∧ v for some v ∈ F . Θ(F ) is a
congruence relation of S.

A semilattice 〈S,∧〉 is called distributive (modular) if t ≥ x∧y (t ≤ x) implies
the existence of x1 ≥ x and y1 ≥ y in S such that t = x1 ∧ y1. A distributive
(modular) PCS (p-algebra) means that the underlying semilattice (lattice) is dis-
tributive (modular). We refer to [3] or [5] for the standard results on PCS’s and
PCL’s.

The concept of modularity, introduced by T. Katriňák and P. Mederly in [4],
and weakened by the same authors in [6], for p-algebras, as follows

((x ∧ y) ∨ z∗∗) ∧ x = (x ∧ y) ∨ (z∗∗ ∧ x)

or

x ≥ y, x ∧ (z∗∗ ∨ y) = (x ∧ z∗∗) ∨ y.
The p-algebras satisfying the above identity are called quasi-modular (see [6]).

3. Construction of quasi-modular PCS’s

In this section, we first introduce the decomposable PCS’s and discuss their basic
properties (see [3], [5], [6]). In the second part, we start investigating the quasi-
modular pseudocomplemented semilattices.

Definition 3.1 (see [3], [5], [6]). A PCS S is said to be decomposable if for
every x ∈ S, there exists d ∈ D(S) such that

x = x∗∗ ∧ d.

It is easy to verify that distributive and modular PCS’s are decomposable. Let
S be a decomposable PCS. For every a ∈ B(S), a binary relation aϕ(S) on D(S)
is defined by

d ≡ e(aϕ(S)) iff d ∧ a∗ = e ∧ a∗.
It is easy to verify that aϕ(S) is a semilattice congruence on D(S) for any

a ∈ B(S). The set of semilattice congruences on D(S), ordered by set inclusion, is
a lattice Con(D(S)) with smallest element ∆ = {(x, x) : x ∈ D(S)} and largest one
∇ = D(S) ×D(S). Clearly, 0ϕ(S) = ∆ and 1ϕ(S) = ∇. It is easy to verify that
a ≤ b implies aϕ(S) ⊆ bϕ(S). The mapping a → aϕ(S), also called the structure
mapping, is a (0,1)-isotone mapping from B(S) into Con(D(S)). Concluding, we
get (B(S), D(S), ϕ(S)), the decomposable triple associated with S (or d-triple).

The triple associated with a decomposable PCS can be abstractly characterized
as follows:

Definition 3.2 (see [6]). An (abstract) d-triple is (B,D,ϕ), where
(i) 〈B;∨,∧,′ , 0, 1〉 is a Boolean algebra.

(ii) D is a ∧-semilattice with 1.

(iii) ϕ is a {0, 1} isotone mapping from B into Con(D).
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Definition 3.3 (see [3]). An isomorphism of the d-triples
(
B,D,ϕ

)
and(

B1, D1, ϕ1

)
is a pair (f, g), where f is an isomorphism of B and B1, and g is

an isomorphism of D and D1 such that the following diagram commutes.

B −→ϕ Con(D)
↓f ↓g
B1 −→ϕ1 Con(D1)

Here g is an isomorphism of Con(D) onto Con(D1) assigning to each Θ ∈ Con(D)
the congruence Θ1 := g(Θ) ∈ Con(D1) given by

(
g(x), g(y)

)
∈ Θ1 if and only if

(x, y) ∈ Θ.

Definition 3.4. A PCS S is called a quasi-modular if x ≤ y and x ≥ y∧z∗∗
in S implies the existence of z1 ∈ S and z1 ≥ z∗∗ such that x = y ∧ z1.

Note that a modular PCL (PCS) is quasi-modular. We refer to [6] for a quasi-
modular PCL-triple construction.

Lemma 3.1. A quasi-modular PCS S is decomposable.

Proof. Assume that x ∈ S. We shall prove that x = x∗∗ ∧ d, where d ∈ D(S).
Since S is quasi- modular, we can consider x ≤ y and x ≥ y ∧ x∗ for x, y ∈ S. By
the hypothesis, there exists d ≥ x∗ such that x = y ∧ d. Since x ≤ x∗∗, we can set
y = x∗∗, which implies x = x∗∗ ∧ d. Therefore, x ≤ d and consequently, d∗ ≤ x∗.
As x∗ ≤ d, we get d∗ ≤ x∗∗. Hence, d∗ ≤ x∗ ∧ x∗∗ = 0, which implies d ∈ D(S).
Thus, S is decomposable. �

The notion of weakly standard elements of a lattice (L,∧,∨) is needed, so we
recall the following definition.

Definition 3.5. (see [1]) An element a ∈ L is weakly standard if for all x, y ∈ L,
x ≤ y implies x ∨ (a ∧ y) = (x ∨ a) ∧ y.

As a reformulation of Definition 3.5 we obtain the next lemma.

Lemma 3.2. Let L be a PCL. Then L is quasi-modular if and only if any
a ∈ B(L) is a weakly standard element of L.

The proof is straightforward.

Theorem 3.1. (see [1, Theorem 5.2.8, p. 87]) Let (L,∨,∧) be a lattice. An
element a ∈ L is weakly standard if and only if there exist no x1, y1 ∈ L such that
a ∧ x1 = a ∧ y1, x1, a, y1 and a ∨ x1 = a ∨ y1 form a sublattice isomorphic to the
pentagon N5 (see Figure 1).

Now, we formulate the following theorem.

Theorem 3.2. Let L = 〈L,∧,∨,∗ , 0, 1〉 be a PCL. Then L is a quasi-modular
PCL if and only if the reduct L1 = (L;∧,∗ , 0, 1), is a quasi-modular PCS.

Proof. Let L be a quasi-modular PCL. Assume x ≤ y and x ≥ y ∧ z∗∗. Put
z1 = x ∨ z∗∗. Hence y ∧ z1 = y ∧ (x ∨ z∗∗) = (y ∧ z∗∗) ∨ x (by quasi-modularity of
L) so we get x = y ∧ z1, z1 ≥ z∗∗.
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Figure 1. N5.

Conversely, assume that L1 is a quasi-modular PCS. Now, suppose to the con-
trary that L is not quasi-modular. Then there exists z ∈ L such that z∗∗ ∈ B(L)
is not weakly standard in L (see Lemma 3.2). Denote a = z∗∗. Hence there exist
x, y ∈ L such that x ≤ y and x ∨ (a ∧ y) < (x ∨ a) ∧ y by distributive inequality,
x ≤ y and the assumption that L is not quasi-modular. Put x1 = x ∨ (a ∧ y) and
y1 = (x∨a)∧y. Therefore, x ≤ x1 < y1 ≤ y in L and the elements a∧x1 = a∧y1,
x1, a, y1 and a ∨ x1 = a ∨ y1 form a sublattice that is isomorphic to N5 (see
Theorem 3.1). Clearly, by the hypothesis, y1 > x1 > y1 ∧ a in L1. Thus, there
exists z1 ∈ L1 such that x1 = z1 ∧ y1 and a ≤ z1. Since L1 is a reduct of L, the
same is true in L. It is easy to verify that a ∨ x1 ≤ z1 in L. Since a ∨ x1 is the
largest element of our N5 sublattice of L, we get x1 = z1 ∧ y1 = y1, which is a
contradiction. �

Remark 3.1. Theorem 3.2 gives an approval of Definition 3.4. It is a guarantee
that Definition 3.4 is actually a good generalization of the notion “quasi-modular”
to a wider class of PCS’s.

Our chief aim in this section is to find a description of triples associated with
quasi-modular PCS’s. From [6, Theorem 1] and Lemma 3.1, we derive easily the
following lemmas.

Lemma 3.3. Let S and S1 be decomposable PCS’s. Assume that S is quasi-
modular. Then the algebras S and S1 are isomorphic if and only if their associated
d-triples are isomorphic.

Lemma 3.4. Let S be a quasi-modular PCS, then
(i) ([d) ∨ [a)) ∧D(S) = [d) ∨ ([a) ∧D(S)) for all a ∈ B(S) and d ∈ D(S);

(ii) S is filter-decomposable.

Proof. (i) We recall that [d), [a) and D(S) are filters of S, which is a PCS. It
is well-known that the set of all filters of S is partially ordered by inclusion and
forms a bounded lattice F (D(S)), the lattice of all filters of S.
Note: If F1, F2 ∈ F (D(S)), then F1 ∧ F2 = F1 ∩ F2 (set intersection). Therefore,

A = ([d) ∨ [a)) ∧D(S) ⊇ [d) ∨ ([a) ∧D(S)) = B

by the distributive inequality. It remains to prove the reverse inclusion A ⊆ B.
Suppose that t ∈ A. Therefore, t = d1 ∧a1 for d ≤ d1 and a ≤ a1. Since t ∈ D(S),



QUASI-MODULAR PSEUDOCOMPLEMENTED SEMILATTICES 177

we see that a∗∗1 = 1. On the other hand, d1 ∈ [d) and a1 ∈ [a) ∧ D(S), which
implies t ∈ B, as desired. (ii) follows from (i) and [6, 5.1]. �

Remark 3.2. Lemma 3.4 says, in other words, that for a quasi-modular PCS S,
it is enough to look after an F-triple associated with S (see [6]). More precisely,
instead of (B(S), D(S), ϕ(S)) we need the F-triple (B(S), D(S), ϕ(S)), where
ϕ : B(S)→ F (D(S)) is a structure mapping defined as follows:

a→ aϕ(S) = [a∗) ∩D(S)

for any a ∈ B(S) (see [6, Section 5]).

Lemma 3.5. Let S be a quasi-modular PCS, and a, b ∈ B. Then
(i) ([a) ∧D(S)) ∨ ([b) ∧D(S)) = (([a) ∧D(S)) ∨ [b)) ∧D(S),

(ii) [b ∨ a) ∨ (D(S) ∧ [a)) = ([b ∨ a) ∨D(S)) ∧ [a),

(iii) (D(S) ∨ [b)) ∧ [a ∧ b) = ((D(S) ∨ [b)) ∧ [a)) ∨ [b),

(iv) ([a) ∧ [b)) ∨D(S) = ([a) ∨D(S)) ∧ ([b) ∨D(S)).

Proof. (i) Let t ∈ (([a)∧D(S))∨[b))∧D(S) which implies t ∈ (([a)∧D(S))∨[b))
and t ∈ D(S). Therefore, t ≥ s∧b, where s ∈ [a)∧D(S). We have s ≥ t∧s ≥ s∧b∗∗.
Hence t∧ s = s∧x, x ≥ b∗∗ = b (i.e., x ∈ [b)) by quasi-modularity. Here x ≥ t∧ s,
and x∗ ≤ (t∧s)∗ = 0, then x ∈ [b)∩D(S). Hence t∧s ∈ ([a)∧D(S))∨([b)∧D(S)),
and so

t ∈ ([a) ∧D(S)) ∨ ([b) ∧D(S)).

Thus (([a) ∧ D(S)) ∨ [b)) ∧ D(S) ⊆ ([a) ∧ D(S)) ∨ ([b) ∧ D(S)). The converse
inclusion is obvious.

(ii) Let t ∈ ([b∨a)∨D(S))∧[a) which implies t ≥ (a∨b)∧s for some s ∈ D(S) and
t ≥ a. We can assume s ≥ t ≥ s∧ (a∨ b)∗∗. Hence t = s∧x, x ≥ a∨ b (x ∈ [a∨ b))
by quasi-modularity. Now s ∈ [a) (since s ≥ t) and s ∈ D(S), then s ∈ D(S)∧ [a).
Hence t ∈ ([b∨a))∨(D(S)∧ [a)) and ([b∨a)∨D(S))∧ [a) ⊆ ([b∨a))∨(D(S)∧ [a)).
The converse inclusion can be directly obtained.

(iii) Let t ∈ (D(S) ∨ [b)) ∧ [a ∧ b) which implies t ≥ a ∧ b and t ∈ [b) ∨D(S).
We have b ≥ t ∧ b ≥ b ∧ a∗∗. Hence t ∧ b = b ∧ x, x ≥ a (x ∈ [a)) by quasi-
modularity. Thus x ≥ t ∧ b which implies x ∈ ((D(S) ∨ [b)) ∧ [a)). Then t ∧ b ∈
((D(S) ∨ [b)) ∧ [a)) ∨ [b), and so

t ∈ ((D(S) ∨ [b)) ∧ [a)) ∨ [b).

Hence (D(S)∨ [b))∧ [a∧b) ⊆ ((D(S)∨ [b))∧ [a))∨ [b). It is easy to get the converse
inclusion.

(iv) Let t ∈ ([a) ∨ D(S)) ∧ ([b) ∨ D(S)) which implies t ∈ ([a) ∨ D(S)) and
t ∈ ([b) ∨ D(S)), that is, t ≥ a ∧ d1 and t ≥ b ∧ d2 for some d1, d2 ∈ D(S). So
t∗∗ ≥ (a∧ d1)∗∗ = a, similarly, t∗∗ ≥ b. S is decomposable implies that t = t∗∗ ∧ d
for some d ∈ D(S). Since t∗∗ ∈ [a) ∧ [b), then t ∈ ([a) ∧ [b)) ∨D(S). The converse
inclusion follows easily. �

Theorem 3.3. Let S be a quasi-modular PCS. Then the structure map ϕ(S) :
B(S)→ F (D(S)) is a (0, 1,∨)-homomorphism.
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Proof. It is clear that 0ϕ(S) = [1) and 1ϕ(S) = D(L). Now we prove
(a ∨ b)ϕ(S) = aϕ(S) ∨ bϕ(S).

From Lemma 3.5 (ii) and (iv), we get

[b ∨ a) ∨ (D(S) ∧ [a)) = (([a ∨ b)) ∨D(S)) ∧ [a) = (([a) ∧ [b)) ∨D(S)) ∧ [a)

= ([a) ∨D(S)) ∧ ([b) ∨D(S)) ∧ [a)

= ([b) ∨D(S)) ∧ [a).

Lemma 3.5 (iii) and the previous equality imply

([b) ∨D(S)) ∧ [a ∧ b) = ((D(S) ∨ [b)) ∧ [a)) ∨ [b)

= [b ∨ a) ∨ (D(S) ∧ [a)) ∨ [b) = ([a) ∧D(S)) ∨ [b).

Lemma 3.5(i) and the last equality imply

([a) ∧D(S)) ∨ ([b) ∧D(S)) = (([a) ∧D(S)) ∨ [b)) ∧D(S)

= ([b) ∨D(S)) ∧ [a ∧ b) ∧D(S)

= ([a ∧ b)) ∧D(S) = ([a) ∨ [b)) ∧D(S).

Therefore,

(a ∨ b)ϕ(S) = [a∗ ∧ b∗) ∧D(S) = ([a∗) ∨ [b∗)) ∧D(S)

= ([a∗) ∧D(S)) ∨ ([b∗) ∧D(S)) = aϕ(S) ∨ bϕ(S).

Thus ϕ(S) : B(S)→ F (D(S)) is a (0, 1,∨)-homomorphism. �

Lemma 3.6. Let S be a quasi-modular PCS and let a, b, c ∈ B(S) and d, e, f ∈
D(S). Let b ≥ a ≥ b∧c and let (b∗ϕ(S)∨ [e)) ⊆ (a∗ϕ(S)∨ [d)) ⊆ (b∧c)∗ϕ(S)∨ [e)).
Then

a∗ϕ(S) ∨ [d) = (b ∧ c1)∗ϕ(S) ∨ [e ∧ f1)

for some c1 ∈ B(S), f1 ∈ D(S) and c1 ≥ c.

Proof. Put x = a∧ d, y = b∧ e and z = c∧ f elements from S. Since S is filter
decomposable, then by [6, 5.1] and the hypothesis, we obtain [b ∧ e) ⊆ [a ∧ d) ⊆
[(b ∧ c) ∧ e). Hence y ≥ x ≥ y ∧ z∗∗. By quasi-modularity of S,

x = y ∧ z1, z1 ≥ z∗∗.
Put z1 = c1∧f1. Therefore, [x)∧D(S) = [y∧ z1)∧D(S), that is, [a∧d)∧D(S) =
[(b ∧ c1) ∧ (e ∧ f1)) ∧D(S). Again by [6, 5.1],

a∗ϕ(S) ∨ [d) = (b ∧ c1)∗ϕ(S) ∨ [e ∧ f1)

as required. �

Now, the triple associated with a quasi-modular PCS can be defined as follows

Definition 3.6. A triple 〈B,D,ϕ〉 is said to be an F-triple of quasi-modular
PCS if

(i) 〈B;∨,∧,′ , 0, 1〉 is a Boolean algebra.

(ii) 〈D;∧, 1〉 is a semi-lattice with 1.

(iii) ϕ is a {0, 1,∨} homomorphism from B into F (D).
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(iv) If a, b, c ∈ B and d, e, f ∈ D. Let b ≥ a ≥ b ∧ c and let (b′ϕ ∨ [e)) ⊆
(a′ϕ ∨ [d)) ⊆ ((b ∧ c)′ϕ ∨ [e)). Then

a′ϕ ∨ [d) = (b ∧ c1)′ϕ ∨ [e ∧ f1)

for some c1 ∈ B, f1 ∈ D and c1 ≥ c.

Theorem 3.4 (Construction). Let 〈B,D,ϕ〉 be an F-triple of quasi-modular
PCS’s, then we can construct a quasi-modular PCS S such that the triples
〈B(S), D(S), ϕ(S)〉 and 〈B,D,ϕ〉 are isomorphic.

Proof. Considering the representation given in [6],

S := {(a, a′ϕ ∨ [d)) : a ∈ B, d ∈ D}
is a decomposable PCS such that 〈B(S), D(S), ϕ(S)〉 ∼= 〈B,D,ϕ〉.

It remains to prove the quasi-modularity of S. Put x := (a, a′ϕ ∨ [d)), y :=
(b, b′ϕ ∨ [e)) and z := (c, c′ϕ ∨ [f)). Let y ≥ x ≥ y ∧ z∗∗, then (b, b′ϕ ∨ [e)) ≥
(a, a′ϕ∨ [d)) ≥ (b∧ c, (b∧ c)′ϕ∨ [e)) implies b ≥ a ≥ b∧ c = b∧ c′′, and b′ϕ∨ [e) ⊆
a′ϕ ∨ [d) ⊆ (b ∧ c)′ϕ ∨ [e). Therefore, a′ϕ ∨ [d) = (b ∧ c1)′ϕ ∨ [e ∧ f1) for some
c1 ∈ B, f1 ∈ D and c1 ≥ c. Hence

(a, a′ϕ ∨ [d)) = (b ∧ c1, (b ∧ c1)′ϕ ∨ [e ∧ f1)),

that is, x = y ∧ z1, z1 = (c1, c
′
1ϕ ∨ [f1)) ≥ (c, c′ϕ) = z∗∗ as required. �

Concluding, from Lemma 3.3 and Theorem 3.4, we get the following theorem.

Theorem 3.5. Two quasi-modular pseudocomplemented semilattices are iso-
morphic if and only if the associated triples are isomorphic. Every F-triple of
quasi-modular PCS is isomorphic to a triple associated with a quasi-modular pseu-
docomplemented semilattice.

4. Homomorphisms and congruence relations

The results in this section are direct consequences of [6, Section 7].
Let S, S1 be quasi-modular PCS’s. A mapping h : S → S1 is said to be a

homomorphism if h preserves the operations ∧ and ∗.
Considering Lemma 3.1 and [6, 7.1], we get the following theorem.

Theorem 4.1. Let S and S1 be quasi-modular PCS’s and let h : S → S1 be a
homomorphism. Then the restriction hB = h|B(S) is a Boolean homomorphism
of B(S) into B(S1) and the restriction hD = h|D(S) is a homomorphism of D(S)
into D(S1) that preserves 1. Moreover, h is onto if and only if hB and hD are
onto.

Definition 4.1. Let (B,D,ϕ) and (B1, D1, ϕ1) be F -triples of quasi-modular
PCS’s. (f, g) : (B,D,ϕ) → (B1, D1, ϕ1) is a PCS F -triple homomorphism if
f : B → B1 is a Boolean homomorphism, g : D → D1 is a 1-preserving homo-
morphism such that for every a ∈ B(S),

aϕg ⊆ afϕ1

holds.
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Theorem 4.2. Let S and S1 be quasi-modular PCS’s. If (f, g) : (B(S), D(S),
ϕ(S)) → (B(S1), D(S1), ϕ(S1)) is an F -triple of quasi-modular PCS homomor-
phism, then there exists a unique homomorphism h : S → S1 such that hB = f
and hD = g.

Proof. The proof can be given by using Lemma 3.4 and [6, 7.3]. �

Definition 4.2. Let (B,D,ϕ) be an F-triple of quasi-modular PCS. A congru-
ence relation of (B,D,ϕ) is a pair (θ1, θ2), where θ1 is a congruence relation of B,
θ2 is a congruence relation of D and a ≡ b (θ1) implies [aϕ]θ2 = [bϕ]θ2 for any
a, b ∈ B, where [cϕ]θ2 = {x ∈ D : there exists y ∈ cϕ with x ≡ y(θ2)}.

The characterization of congruence relations on quasi-modular PCS’s is de-
scribed by the following theorem.

Theorem 4.3. Let S be a quasi-modular PCS. If θ is a congruence relation on
S, then (θB , θD) is a congruence relation of (B(S), D(S), ϕ(S)), where θB and θD
are restrictions of θ to B(S)× B(S) and D(S)×D(S), respectively. Conversely,
let (θ1, θ2) be a congruence relation of (B(S), D(S), ϕ(S)). Then there exists a
uniquely determined congruence relation θ of S with θB = θ1 and θD = θ2 such
that

x = x∗∗ ∧ d ≡ y = y∗∗ ∧ e(θ) iff x∗∗ ≡ y∗∗(θ1) and d ≡ e(θ2).

Proof. Since S is filter decomposable by Lemma 3.4, the proof is straightforward
as in [6, 7.4]. �
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