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ON THE DENSITY OF C7-CRITICAL GRAPHS

L. POSTLE and E. SMITH-ROBERGE

Abstract. In 1959, Grötszch famously proved that every planar graph of girth
at least 4 admits a homomorphism to C3. A natural generalization is the follow-

ing conjecture: for every positive integer t, every planar graph of girth at least 4t

admits a homomorphism to C2t+1. This is the planar dual of a well-known conjec-
ture of Jaeger, which states that every 4t-edge-connected graph admits a modulo

(2t + 1)-orientation. Though Jaeger’s original conjecture was recently disproved,

it has been shown to hold for 6t-edge-connected graphs. This implies that every
planar graph of girth at least 6t admits a homomorphism to C2t+1. We improve

upon the t = 3 case, by showing that every planar graph of girth at least 16 admits
a homomorphism to C7. We obtain this through a more general result regarding

the density of critical graphs: if G is a C7-critical graph with G 6∈ {C3, C5}, then

e(G) ≥ 17v(G)−2
15

. Our girth bound is the best known result for Jaeger’s Conjecture

in the t = 3 case.

1. Introduction

In 1951, Dirac [2] introduced the concept of colour-criticality and since then,
colour-critical graphs have been widely studied. A graph G is k-critical if its
chromatic number is k and the chromatic number of every proper subgraph of G is
strictly less than k. As every graph with chromatic number k contains a k-critical
subgraph, it is useful to study k-colourability via colour-critical graphs. More
generally, it is useful to study graph homomorphisms1 through homomorphism-
critical graphs, which we define as follows.

Definition 1.1. Let H be a graph. A graph G is H-critical if every proper
subgraph of G admits a homomorphism to H, but G itself does not.

Perhaps one of the more famous results concerning homomorphisms of planar
graphs is Grötszch’s Theorem [5], which states that every planar graph of girth
at least 4 admits a homomorphism to C3 (or equivalently, is 3-colourable). As a
natural generalization of this, one might conjecture the following.

Conjecture 1.2. If G is a planar graph of girth at least 4t, then G admits a
homomorphism to C2t+1.

Received June 6, 2019.
2010 Mathematics Subject Classification. Primary 05C42, 05C10, 05C60, 05C15.
1A homomorphism φ : G→ H from a graph G to a target graph H is a mapping of the vertices

of G to those of H, such that for each edge uv ∈ E(G), φ(u)φ(v) ∈ E(H).
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This is in fact the planar dual of a well-known conjecture of Jaeger [6] which
states that every 4t-edge-connected graph admits a modulo (2t+ 1)-orientation2.
Though Jaeger’s original conjecture was shown to be false in early 2018 [4], all
counterexamples found thus far are non-planar. As such, Conjecture 1.2 is still
open. We note that Conjecture 1.2 is equivalent to saying that if G is a planar
graph of girth at least 4t, then G admits a 2t+1

t -circular colouring. For an overview
on circular colouring, see [14]. The t = 1 case is the only case in which the
conjecture has been confirmed: it is equivalent to Grötzsch’s theorem, which states
that every triangle-free planar graph is 3-colourable.

Considerable progress has been made in the general t case, though the girth
bound of 4t remains elusive. In 1996, Nešetřil and Zhu [11] showed that every
planar graph of girth at least 10t− 4 admits a homomorphism to C2t+1. In 2000,
Klostermeyer and Zhang [7] showed that it was sufficient to bound the odd girth3

of the graph as being at least 10t− 3. A year later, Zhu [15] showed that a girth
of at least 8t− 3 is sufficient, and in 2003, Borodin et al. [1] improved upon this
by showing a girth of at least 20t−3

3 suffices. Progress stalled for a decade until
in 2013, Lovász et al. [10] showed that every 6t-edge-connected graph admits a
modulo (2t+ 1)-orientation. As a corollary to this, they obtain that every planar
graph of girth at least 6t admits a homomorphism to C2t+1. This is the best
known general bound, though in the t = 2 case Dvořák and Postle [3] showed that
every planar graph of odd girth at least 11 (and hence of girth at least 10) admits
a homomorphism to C5.

Our first main result is the following.

Theorem 1.3. If G is a planar graph with girth at least 16, G admits a homo-
morphism to C7.

This stems from Theorem 1.4, below, in which we bound the density of C7-
critical graphs. A trivial density bound for C2t+1-critical graphs arises from the
fact that they have minimum degree two. This tells us that if G is a C2t+1-critical
graph, then e(G) ≥ v(G). Unfortunately, we cannot beat this bound in the general
case as for t ≥ 1, the (2t− 1)-cycle is C2t+1-critical. However, we can do better if
we assume G contains a vertex of degree at least 3. In this case, a straightforward
discharging argument shows that if G is a C2t+1-critical graph that contains a
vertex of degree at least 3, then e(G) ≥

(
1 + 1

4t

)
v(G) + 1

3t .
Ours are not the first density results regarding C2t+1-critical graphs. In [1],

Borodin et al. show that if G is a C2t+1-critical graph with girth at least 6t − 2,
then G contains a subgraph H with e(H) ≥ (1 + 3

10t−4 )v(H). In [3], Dvořák
and Postle give the best-known result for the t = 2 case by showing that every

C5-critical graph on at least four vertices has e(G) ≥ 5v(G)−2
4 .

Our second main result, which concerns the density of C7-critical graphs, is the
following.

2That is, an orientation of its edges such that for each vertex, the difference of the in-degree and
the out-degree is congruent to 0 modulo 2t+ 1.
3The odd girth of a graph is the length of its shortest odd cycle.
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Theorem 1.4. Let G be a C7-critical graph. If G 6∈ {C3, C5}, then e(G) ≥
17v(G)−2

15 .

This gives the best known density result for C7-critical graphs. From Theo-
rem 1.4 and using Euler’s formula for graphs embedded in surfaces, we immediately
obtain the following result.

Theorem 1.5. If G is a planar or projective planar graph of girth at least 17,
then G admits a homomorphism to C7.

In order to further lower the girth bound to 16 in the planar case and obtain
Theorem 1.3, we use the following lemma of Klostermeyer and Zhang [7].

Lemma 1.6 (Folding Lemma). Let G be a planar graph with odd girth k. If
C = v0 . . . vr−1v0 is a cycle in G that bounds a face and r 6= k, then there is an
integer i ∈ {0, . . . , r − 1} such that the graph G′ obtained from G by identifying
vi−1 and vi+1 (mod r) is of odd girth k.

With this, we obtain from Theorem 1.5 the following theorem:

Theorem 1.7. If G is a planar graph with odd girth at least 17, then G admits
a homomorphism to C7.

Proof. By the Folding Lemma, we may assume a minimum counterexample to
Theorem 1.7 only has faces of length 17. The theorem now follows directly from
Theorem 1.4 and Euler’s formula for planar graphs. �

In Section 2, we will highlight some of the more important concepts used in
the proof of Theorem 1.4. For simplicity and brevity, many structural lemmas
are omitted; those that are included are included without proof. Section 3 gives
an overview of how the discharging portion of the proof unfolds, and of how the
structure and techniques described in Section 2 are used.

2. Preliminaries

Before proceeding with an outline of the proof of Theorem 1.4, we will introduce
some of the concepts and techniques used. A crucial part of our analysis of graph
homomorphisms consists of examining the extensions of partial homomorphisms
to the entire graph. Paths with internal vertices of degree 2 play an important
role in our investigation, as it is easy to determine the extensions of a partial ho-
momorphism along such paths. In addition, the low-density C7-critical graphs we
study contain a relatively high amount of vertices of degree two. As a consequence,
such paths are ubiquitous. For these reasons, we define the following terms.

Definition 2.1. A string in a graph G is a path with internal vertices of degree
two and endpoints of degree at least three. A k-string is a string with k internal4

vertices. We say a vertex is incident with a string if it is an endpoint of the string.
Two vertices share a string if they are the endpoints of that string.

4A vertex v in a path P is internal if it is not an endpoint of P .
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If a vertex is incident with many long strings, then its local density is relatively
low. As we aim to lower-bound the density of C2t+1-critical graphs, it is useful to
be able to bound the number of degree two vertices in the strings incident with
vertices of degree at least three. This is accomplished in the following lemma.

Lemma 2.2. If G is an C2t+1-critical graph, then G does not contain a k-string
with k ≥ 2t− 1.

The proof of this lemma stems from the fact that if P is a path with 2t − 1
vertices, S = uPv is a 2t − 1-string in G, and φ is a homomorphism from G r P
to C2t+1, then no matter φ(u) and φ(v), there exists an extension of φ to G. This
contradicts the fact that G is C2t+1-critical.

Lemma 2.2 gives us a bound on the local density surrounding a vertex of degree
at least three, but a better bound arises by considering the entire set of strings
incident with the vertex rather than each string individually. To that end, we
define the weight of a vertex as follows.

Definition 2.3. Let G be a graph, and let v ∈ V (G) be a vertex of degree
d ≥ 3, and let k1, k2, . . . , kd be integers with k1 ≥ · · · ≥ kd. If v is incident with d
distinct strings S1, . . . , Sd where Si is a ki-string for each 1 ≤ i ≤ d, we say v is of
type (k1, . . . , kd). If v is a vertex of type (k1, . . . , kd), we define the weight of v as

wt(v) =
∑d

i=1 ki.

Note that if G is a C2t+1-critical graph, then G is 2-connected. Thus no vertex
in a C2t+1-critical graph is both endpoints of a single string, and hence the type
of a vertex in a C2t+1-critical graph is always well-defined. We bound the weight
of vertices as follows.

Lemma 2.4. Let G be an C2t+1-critical graph. If v ∈ V (G), then wt(v) ≤
(2t− 1) deg(v)− (2t+ 1).

Similarly to the proof of Lemma 2.2, the proof of this lemma follows by noting
that if a vertex v ∈ V (G) has weight at least (2t− 1) deg(v)− (2t+ 1), then there
exists a homomorphism φ : Gr {v} → C2t+1 that extends to G.

Cycles of length seven play an important role in establishing the structure of
C7-critical graphs in the proof of Theorem 1.4. We call a (2t+1)-cycle in a C2t+1-
critical graph a cell. In the discharging portion of our proof, cells aggregate and
dispense charge in the graph in much the way vertices do. In this way, we think
of cells as elementary structures, and treat them as supervertices. It is therefore
unsurprising that notions of cell weight, degree and type (analogous to their vertex
counterparts) prove useful in our analysis.

In the spirit of Lemma 2.4, the following lemma provides some restriction on
the local structure surrounding a cell in a C2t+1-critical graph.

Lemma 2.5. Let G be a C2t+1-critical graph. If C is a cell of G, then wt(C) ≤
(2t− 1) deg(C)− (2t+ 1).

Several other lemmas are needed in order to rule out the existence of certain
types of vertices in C7-critical graphs and to establish the local structure surround-
ing others. These lemmas are omitted for simplicity.
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In the proof of Theorem 1.4, we will use potential to learn about the density
of subgraphs of minimum counterexample to Theorem 1.4. The potential method
used here was popularized by Kostochka and Yancey in [9] in order to give a
lower bound on the number of edges in colour-critical graphs. In [3], Dvořák and
Postle use potential to bound the density of C5-critical graphs. For our purposes,
the potential of a graph G is given by p(G) = 17v(G) − 15e(G). We note that
potential on its own is merely a measure of the density of the graph: what makes
it a powerful tool for structural analysis is a reduction technique which allows us to
bound potential of subgraphs of a critical graph using the potential of the critical
graph itself.

3. Outline of the proof of Theorem 1.4

3.1. Structure of a minimum counterexample

The proof of Theorem 1.4 is obtained via reducible configurations and discharging.
For the remainder of our discussion, G refers to a counterexample to Theorem 1.4
with v(G) minimum and, subject to that, with e(G) minimum. The following
lemma gives us insight into the potential of subgraphs of G.

First, we require the following definition.

Definition 3.1. Let H be a graph. We denote by Pt(H) the set of graphs
obtained from H by adding a path P of length t joining two distinct vertices of
H, such that the internal vertices of P are disjoint from V (H).

Lemma 3.2. Let H be a subgraph of G. Then the following all hold:

1. p(H) ≥ 3 if H = G,
2. p(H) ≥ 10 if G ∈ P5(H),
3. p(H) ≥ 12 if G ∈ P4(H),
4. p(H) ≥ 14 if G ∈ P3(H),
5. p(H) = 14 if H = C7, and
6. p(H) ≥ 15 otherwise.

This lemma is used in establishing the structure of G, which will be useful
in the discharging portion of the proof. More specifically, using Lemma 3.2 we
characterize the intersection of certain cycles in G: if C and C ′ are distinct 7-cycles
in G, then C and C ′ are vertex-disjoint; if C and C ′ are cycles of length seven and
nine, respectively, in G, then C and C ′ are edge-disjoint; if C and C ′ are distinct
9-cycles in G, with V (C) ∩ V (C ′) 6= ∅, then their intersection is a path of length
at most two.

3.2. Discharging

Recall G is a counterexample to Theorem 1.4 with v(G) minimum and, subject
to that, with e(G) minimum. Since potential is integral, it follows that p(G) ≥ 3.
Let X ⊆ V (G) be the set of vertices of degree at least three. We assign an
initial charge of ch0(v) = 15 deg(v) − 2wt(v) − 34 to each vertex v ∈ X, and
ch0(v) = 0 for each v ∈ V (G) r X. Note

∑
v∈X(15 deg(v) − 2wt(v) − 34) =
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v∈X(15 deg(v)−34)−

∑
v∈V (G)rX 4, since every vertex v of degree 2 contributes

to the weight of two distinct vertices in X (namely, the endpoints of the string
that contain v). Since

∑
v∈V (G)rX 4 =

∑
v∈V (G)rX 34− 15 deg(v), we have

(1)

∑
v∈V (G)

ch0(V ) =
∑

v∈V (G)

(15 deg(v)− 34)

= 15
∑

v∈V (G)

deg(v)−
∑

v∈V (G)

34

= 30e(G)− 34v(G)

= −2p(G)

≤ −6, since p(G) ≥ 3 and potential is integral.

We will redistribute the charge among the vertices and cells until every vertex and
cell has non-negative charge, contradicting the fact that the sum of the charges is
at most −6.

For simplicity, we will refer to a vertex as being poor if it has negative charge.
Note by Lemma 2.4, if v is a vertex in V (G), then wt(v) ≤ 5 deg(v)−7. For a vertex
v ∈ X, we therefore have ch0(v) ≥ 15 deg(v)−2(5 deg(v)−7)−34 = 5 deg(v)−20.
Therefore the only possibly poor vertices are vertices of degree three. If v has
degree three and is poor, then it has weight at least six since ch0(v) = 11−2wt(v).
By Lemma 2.4, vertices of degree three (and thus poor vertices) have weight at
most eight.

Before proceeding with the analysis, the existence of several types of poor ver-
tices is ruled out. This is accomplished using the characterization of intersecting
7- and 9-cycles, as well as the potentials of subgraphs of G (see Lemma 3.2).
In particular, we show that G does not contain vertices of type (4, 4, 0), of type
(4, 3, 1), or of type (3, 3, 2). Thus the only poor vertices of weight eight are of type
(4,2,2). The poor vertices of weight seven are of type (4,3,0), (4,2,1), (3,3,1), or
(3,2,2), and the poor vertices of weight six are of type (4,2,0), (4,1,1), (3,3,0), or
(3,2,1).

As not all vertices of degree three and weight at least six can be ruled out out-
right, much of the remainder of the structural analysis consists of establishing the
local structure surrounding the vertices of degree three and the cells and vertices
that later send them charge.

We discharge in steps: each step consists of a single rule R that is carried out
instantaneously throughout the graph. For convenience, we refer to the rules and
steps interchangeably. At the end of Step i., the resulting charge of each cell and
vertex is denoted by chi. If S is a k-string with k ≤ 2, we refer to S as a short
string.

R1. Each vertex contained in a cell sends all of its charge to the cell that contains
it. (Since cells are disjoint as shown above, this is unambiguous.)

R2. Let u and v share a short string. If u is in a cell C and v is poor after Step
1, C sends −ch1(v) charge to v.
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R3. Let u and v share a short string with deg(u) ≥ 4. If v is poor after Step 2,
u sends −ch2(v) charge to v.

R4. Let u and v share a short string with deg(u) = 3 and wt(u) ≤ 4. If v is
poor after Step 3, u sends −ch3(v) charge to v.

R5. Let u and v share a short string with deg(u) = 3 and wt(u) = 5. If v is
the only poor vertex that shares a short string with u after Step 4, then u
sends −ch4(v) charge to v.

We note two important facts regarding the discharging rules. First, the rules
are performed sequentially. This ensures that in the later steps of the discharging
process, we will have uncovered a significant amount of information regarding the
local structure of the vertices receiving charge. Second, vertices and cells only send
charge along short strings. If a vertex or cell sends charge to many poor structures,
it follows that the vertex or cell sending charge has relatively low weight and so
consequently has a large amount of charge to spare.

The remainder of the analysis is dedicated to showing that every structure in
the graph ultimately has non-negative charge. This contradicts Equation (1), thus
ruling out the existence of a minimum counterexample to Theorem 1.4.

4. Open questions

A natural question to wonder is whether or not the density bound obtained in
Theorem 1.4 is best possible. We suspect not. Kostochka and Yancey [9] showed

that if G is k-critical and k ≥ 4, then e(G) ≥ (k
2 −

1
k−1 )v(G)− k(k−3)

2(k−1) . Later, they

showed this is tight for graphs5 obtained via a construction given by Ore in [12].
A k-critical graph given by Ore’s construction is called a k-Ore graph. Given a
(2t+ 2)-critical graph, there is a seemingly natural way to obtain a C2t+1-critical
graph by edge subdivisions. Indeed, we have the following.

Proposition 4.1. If G is a (2t+ 2)-critical graph, then the graph G′ obtained
from G by subdividing every edge (2t− 2) times is C2t+1-critical.

Since the edge-density obtained by Kostochka and Yancey for k-critical graphs is
tight for k-Ore graphs, it seems reasonable that the corresponding density obtained
from subdividing a (2t + 2)-Ore graph could be best possible for C2t+1-critical
graphs. This idea motivates the following.

Proposition 4.2. Let t ≥ 1 be an integer, and let G be a (2t + 2)-Ore graph.
Let G′ be the graph obtained from G by subdividing each edge in E(G) (2t − 2)

times. Then e(G′) = t(2t+3)v(G′)−(t+1)(2t−1)
2t2+2t−1 .

We therefore find it reasonable to ask the following question.

Question 4.3. Let t ≥ 3. Does every C2t+1-critical graph G satisfy e(G) ≥
t(2t+3)v(G)−(t+1)(2t−1)

2t2+2t−1 ?

5They showed further that this bound is tight only for the graphs obtained via Ore’s construction.
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We note that the family of graphs described in Proposition 4.2 show that it is
impossible to prove Conjecture 1.2 using only a density bound. When t = 3, the
graphs described in Proposition 4.2 have an asymptotic density of 27

23 . However,
using Euler’s planar graph formula, we have that if G is a planar graph of girth at

least g, then e(G) ≤ g
g−2 (v(G)−2) —or, asymptotically, that e(G)

v(G) ≤
g

g−2 . In order

to obtain a density argument that implies a relaxation of Conjecture 1.2, the girth
bound g chosen in the relaxation will satisfy g

g−2 ≤
27
23 —in other words, g ≥ 14.

A proof of Conjecture 1.2 will thus not be a purely density-based argument.
Finally, we note that a positive answer to Question 4.3 together with Euler’s

formula for planar graphs implies that if G is a planar graph with girth at least
4t+ 2, then G admits a homomorphism to C2t+1. The girth bound of 4t+ 2 is of
particular interest as no counterexamples to the primal version of the conjecture
with edge-connectivity 4t+ 2 have yet been found.
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