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EDGE ORDERED TURÁN PROBLEMS

D. GERBNER, A. METHUKU, D. T. NAGY, D. PÁLVÖLGYI, G. TARDOS
and M. VIZER

Abstract. We introduce the Turán problem for edge ordered graphs. We call a

simple graph edge ordered, if its edges are linearly ordered. An isomorphism between
edge ordered graphs must respect the edge order. A subgraph of an edge ordered

graph is itself an edge ordered graph with the induced edge order. We say that an

edge ordered graph G avoids another edge ordered graph H, if no subgraph of G
is isomorphic to H. The Turán number ex′

<(n,H) of a family H of edge ordered

graphs is the maximum number of edges in an edge ordered graph on n vertices

that avoids all elements of H.
We examine this parameter in general and also for several singleton families of

edge orders of certain small specific graphs, like star forests, short paths and the
cycle of length four.

1. Introduction

The most basic form of a Turán type extremal problem asks the maximum number
ex(n,H) of edges in an n-vertex simple graph that does not contain a “forbidden”
graph H as a subgraph. For a family H of forbidden graphs we write ex(n,H) to
denote the maximal number of edges of a simple graph on n vertices that contains
no member of H as a subgraph. This problem has its roots in the works of Mantel
[12] and Turán [18], for recent results consult the survey of Füredi and Simonovits
[6]. For the extremal theory of graphs with a circular or linear order on their vertex
set, see Braß, Károlyi and Valtr [1] or Tardos [17], respectively. Note that vertex
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ordered graphs are usually called ordered graphs in the literature. Here we extend
this theory to edge ordered graphs.

An edge ordered graph is a finite simple graph G = (V,E) with a linear ordering
on its edge set E. We often give this linear order with an injective function
L : E → R, that we call a labeling. In this case we denote the edge ordered graph
obtained by GL and we also call it a labeling of G.

An isomorphism between edge ordered graphs must respect the edge order. A
subgraph of an edge ordered graph is itself an edge ordered graph with the induced
edge order. We say that the edge ordered graph G contains another edge ordered
graph H, if H is isomorphic to a subgraph of G. Otherwise we say that G avoids
H. We say that G avoids a family of edge ordered graphs if it avoids every member
of the family. When speaking of a family of edge ordered graphs we always assume
that all members of the family are non-empty, that is, they have at least one edge.
This is necessary for the definition of the Turán number below to make sense. The
Turán problem for edge ordered graphs can be formulated as follows.

Definition 1.1. For a positive integer n and a family of edge ordered graphs
H let ex′<(n,H), the Turán number of H, stand for the maximal number of edges
in an edge ordered graph on n vertices that avoids H. In case there is only one
forbidden edge ordered graph H we simply write ex′<(n,H) to mean ex′<(n, {H}).
Note that Turán problems for vertex ordered graphs (see [17]) deal with the same
function but with linear ordering on the vertices instead of edges.

We will denote labelings of short paths and cycles by simply giving the labels
of the edges along the path or cycle. For example the labeling of P4 (the path
on four vertices) that gives the first edge the label 1, the second edge the label
3, and the last edge the label 2 is denoted by P 132

4 . Similarly, C1234
4 denotes the

cyclically increasing labeling of the cycle C4.

1.1. History

We are only aware of very few particular instances of this problem that have
been investigated earlier. In most of these cases one was looking for an increasing
path or trail. Call a sequence v1, . . . , vk of vertices in an edge ordered graph an
increasing trail if vivi+1 form a strictly increasing sequence of edges for 1 ≤ i < k.
If all the vertices vi are distinct, we call it an increasing path. Chvátal and Komlós
[3] proposed to determine the length of the longest increasing trail/path that can
be found in all labelings of Kn. Later Graham and Kleitman [8] proved that for
trails the answer is exactly n−1 (if n ≥ 6) and for paths they obtained the bounds
(
√

4n− 3 − 1)/2 from below and 3n/4 from above. This corresponds to a single
forbidden edge ordered graph, namely the increasing path P 12···k

k+1 that we denote

by P inc
k+1. The question was also studied in arbitrary host graphs where they call

the altitude of the simple graph G the length of the longest increasing path that
can be found in every labeling GL of G. Note that determining how many edges a
simple graph with a given altitude and number of vertices can have is equivalent
to finding ex′<(n, P inc

k ). For more recent results on this problem, see e.g. [2, 14]
and the references therein.



EDGE ORDERED TURÁN PROBLEMS 719

Rödl [15] proved that any graph with average degree at least k(k+1) has altitude

at least k. In our notation this can be formulated as ex′<(n, P inc
k ) <

(
k
2

)
n. In terms

of k, this is far from the lower bound ex′<(n, P inc
k ) ≥ ex(n, Pk) = k−2

2 n−O(k2).

A result of Tardos [16] implies ex′<(n, T 1432
5 ) = O(n log n), where T 1432

5 denotes
the family of trails corresponding to the edge ordered path P 1432

5 (that is, T 1432
5

consists of P 1432
5 and the three edge ordered graphs obtained from it by identifying

vertices of distance at least three).
The only result we are aware of where the forbidden edge ordered graph is

neither a path, nor a trail, is due to Gerbner, Patkós and Vizer [7]. They proved
ex′<(n,C1243

4 ) = O(n5/3). This result was the starting point of our research.

2. General results

The most general result in Turán-type extremal graph theory is the Erdős-Stone-
Simonovits theorem:

Theorem 2.1 (Erdős-Stone-Simonovits theorem [4, 5]). Let H be a family of
simple graphs and r + 1 = min{χ(H) : H ∈ H} ≥ 2. We have

ex(n,H) =

(
1− 1

r
+ o(1)

)
n2

2
.

Here χ(H) stands for the chromatic number of the graph H. The key to extend
this result to edge ordered graphs is to find the notion that can play the role of
the chromatic number in the original theorem. We do this as follows.

Definition 2.2. We say that a simple graph G can avoid a family H of edge
ordered graphs, if there is a labeling GL of G that avoids all members of H.

Let χ′<(H), the order chromatic number of H, stand for the smallest chromatic
number χ(G) of a finite graph G that cannot avoid H. In case all finite simple
graphs can avoid H we define χ′<(H) =∞. In case the family H contains a single
edge ordered graph we write χ′<(H) to denote χ′<({H}).

Remark. Recall that when speaking of a family of edge ordered graphs we
assume no member of the family is empty. This makes the order chromatic number
at least 2.

Theorem 2.3 (Erdős-Stone-Simonovits theorem for edge ordered graphs).
If χ′<(H) =∞, then

ex′<(n,H) =

(
n

2

)
.

If χ′<(H) = r + 1 <∞, then

ex′<(n,H) =

(
1− 1

r
+ o(1)

)
n2

2
.

Whereas the asymptotics of the Turán number of a family of simple graphs
depends on the lowest chromatic number of a single graph in the family, in our re-
sults the order chromatic number of the entire family counts. This is a meaningful
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difference for order chromatic numbers 3 and up, but not for 2 as we could prove
the following.

Theorem 2.4. We have

• χ′<(H) = 2 if and only if there exists G ∈ H with χ′<(G) = 2, and
• χ′<(P 1423

5 ) = χ′<(P 2314
5 ) =∞, but χ′<({P 1423

5 , P 2314
5 }) = 3.

2.1. Results about the best and worst orderings of a graph

As different labelings of the same underlying graph can have really different order
chromatic numbers, it is natural to investigate the following: a non-empty finite
graph G, let χ−<(G) := minL χ

′
<(GL), where the minimum is over all labelings L

of G. Similarly, let χ+
<(G) := maxL χ

′
<(GL). We can determine χ−<(G) for many

simple graphs G and χ+
<(G) for all of them.

Proposition 2.5. We have:

• χ−<(G) ≥ χ(G) for any graph G, and
• χ−<(G) = 2 if and only if χ(G) = 2.

Proposition 2.6. χ−<(K4) =∞.

Recall that a star is a simple, connected graph in which all edges share a common
vertex and a star forest is a non-empty graph whose connected components are all
stars. We allow isolated vertices (as empty stars) but require that a star forest is
not empty.

Theorem 2.7. We have χ+
<(G) = 2 if G is a star forest or G = P4. We have

χ+
<(K3) = 3. For all remaining non-empty simple graphs G we have χ+

<(G) =∞.

3. Results about specific edge ordered graphs

3.1. Star forests

We could connect the Turán function of edge ordered star forests to Davenport-
Schinzel theory (for an introduction see e.g., [11]) and prove the following:

Theorem 3.1. Let F be an edge ordered star forest and let α(n) be the inverse
Ackermann function. We have

ex′<(n, F ) ≤ n2α(n)
c

,

where the exponent c depends on F , but not on n.

Let F0 be the edge ordered star forest, with five edges such that the first, third and
fifth edges form a star component and the second and fourth edges form another
component. We have

ex′<(n, F0) = Ω(nα(n)).

Theorem 3.2. For edge ordered star forests F on at most 4 edges we have

ex′<(n, F ) = O(n).
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3.2. Paths

As we have mentioned in the introduction, known results on the altitude of graphs
imply a linear upper bound on the number of edges if the monotone labeling of the
path Pk is forbidden. We can also estimate the Turán numbers of other labelings
of paths on four or five vertices.

Theorem 3.3. For an edge ordered path PL4 on four vertices we have

ex′<(n, PL4 ) = Θ(n).

The labelings of P5 are given by permutations of {1, 2, 3, 4}. Labelings obtained
from one another by reversing the path or reversing the edge order yield equal
Turán numbers. This makes for eight equivalence classes of the labelings of P5.
We could determine the order of magnitude of the edge ordered Turán number for
all but one of them.

Theorem 3.4.

• If L ∈ {1234, 4321} ∪ {1243, 3421, 4312, 2134}, then we have ex′<(n, PL5 ) =
Θ(n).

• If L ∈ {1324, 4231} ∪ {1432, 2341, 4123, 3214} ∪ {2143, 3412}, then we have
ex′<(n, PL5 ) = Θ(n log n).

• If L ∈ {2413, 3142} ∪ {1423, 3241, 4132, 2314}, then we have ex′<(n, PL5 ) =(
n
2

)
.

• If L ∈ {1342, 2431, 4213, 3124}, then we have ex′<(n, PL5 ) = Ω(n log n) and

ex′<(n, PL5 ) = O(n log2 n)

3.3. The 4-cycles

The automorphisms of C4 leave only three non-isomorphic labelings of C4. It
is easy to see that ex′<(n,C1234

4 ) = ex′<(n,C1324
4 ) =

(
n
2

)
. Concerning the third

possible labeling of C4 we improve the upper bound ex′<(n,C1243
4 ) = O(n5/3)

that appeared in [7]. Our new bound is close to the trivial lower bound of
ex′<(n,C1243

4 ) ≥ ex(n,C4) = Θ(n3/2).

Theorem 3.5. ex′<(n,C1243
4 ) = O(n3/2 log n).

The proof of this theorem is inspired by [13].
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D. Pálvölgyi, MTA-ELTE Lendület Combinatorial Geometry Research Group, Institute of Math-
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