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DENSITY AND FRACTAL PROPERTY

OF THE CLASS OF ORIENTED TREES

J. HUBIČKA, J. NEŠETŘIL and P. OVIEDO

Abstract. We show a density theorem for the class of finite proper trees ordered

by the homomorphism order, where a proper tree is an oriented tree which is not
homomorphic to a path. We also show that every interval of proper trees, in addition

to being dense, is in fact universal. We end by considering the fractal property in the

class of all finite digraphs. This complements the characterization of finite dualities
of finite digraphs.

1. Introduction

In this note we consider finite directed graphs (or digraphs) and countable partial
orders. A homomorphism between two digraphs f : G1 → G2 is an arc preserving
mapping from V (G1) to V (G2). If such homomorphism exists we write G1 ≤ G2.
The relation ≤, called the homomorphism order, defines a quasiorder on the class
of all digraphs which, by considering equivalence classes, becomes a partial order.
A core of a digraph is its minimal homomorphic equivalent subgraph.

In the past three decades the richness of the homomorphism order of graphs
and digraphs has been extensively studied [2]. In 1982, Welzl showed that undi-
rected graphs, with one exception, are dense [7]. Later in 1996, Nešetřil and Zhu
characterized the gaps and showed a density theorem for the class of finite oriented
paths [6]. We contribute to this research by showing a density theorem for the
class of oriented trees. We say that an oriented tree is proper if its core is not a
path.

Theorem 1.1. Let T1 and T2 be two finite oriented trees satisfying T1 < T2.
If T2 is a proper tree, then there exists a tree T such that T1 < T < T2.

This result was claimed by Miroslav Treml around 2005, but never published.
Our proof of Theorem 1.1 is new and simple, and leads to further consequences.
In particular, we can show the following strengthening. Let us say that a partial
order is universal if it contains every countable partial order as a suborder.
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Theorem 1.2. Let T1 and T2 be two finite oriented trees satisfying T1 < T2.
If T2 is a proper tree, then the interval [T1, T2] is universal.

Recently, it has been shown that every interval in the homomorphism order
of finite undirected graphs is either universal or a gap [1]. As consequence of
Theorem 1.2, this property, called fractal property, seems to be present in other
classes of digraphs. In fact, we have shown the following result related to the class
of finite digraphs.

Theorem 1.3. Let G and H be two finite digraphs satisfying G < H, where the
core of H is connected and contains a cycle. Then the interval [G,H] is universal.

The proof of Theorem 1.3 will appear in the full version of this note.

2. Preliminaries

We follow the notation used in Hell and Nešetřil’s book [2].
A digraph G is an ordered pair of sets (V,A) where V = V (G) is a set of elements

called vertices and A = A(G) is a binary irreflexive relation on V . The elements
(u, v), denoted uv, of A(G) are called arcs.

A path is a digraph consisting in a sequence of different vertices {v0, . . . , vk}
together with a sequence of different arcs {e1, . . . , ek} such that ei is an arc joining
vi−1 and vi for each i = 1, . . . , k. A cycle its defined analogously but with v0 = vk.
A tree is a connected digraph containing no cycles. The height of a tree is the
maximum difference between forward and backward arcs of a subpath in it.

A homomorphism from a digraph G to a digraph H is a mapping f : V (G) →
V (H) such that uv ∈ E(G) implies f(u)f(v) ∈ E(H). It is denoted f : G → H.
If there exists a homomorphism from G to H we write G → H, or equivalently,
G ≤ H. We shall write G < H for G ≤ H and H � G. The interval [G,H]
consists in all digraphs X such that G ≤ X ≤ H. A gap is an interval in which
there is no digraph X such that G < X < H.

The relation ≤ is clearly a quasiorder which becomes a partial order by choosing
a representative for each equivalence class, in our case the so called core. A core
of a digraph is its minimal homomorphic equivalent subgraph.

Given two partial orders (P1,≤1) and (P2,≤2), an embedding from (P1,≤1) to
(P2,≤2) is a mapping Φ: P1 → P2 such that for every a, b ∈ P1, a ≤ b if and only
if Φ(a) ≤ Φ(b). If such a mapping exists we say that (P1,≤1) can be embedded
into (P2,≤2).

Finally, a partial order is universal if every countable partial order can be
embedded into it.

3. Density Theorem

In order to prove Theorem 1.1 we shall construct a tree Dn(T2) from a given proper
tree T2 which will satisfy T1 < Dn(T2) < T2 for every tree T1 < T2.
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Given a tree T , a vertex u ∈ V (T ) and a set of vertices S ⊆ V (T ), the plank
from u to S, denoted P (u, S), is the subgraph induced by the vertices of every
path which starts with u and contains some vertex v ∈ S.

Let T2 be the core of a proper tree. Then there exists a vertex x ∈ V (T2) such
that x is adjacent to at least three different vertices, name them u, v, w. Without
loss of generality we shall assume that ux and wx are arcs. Let X ′ ⊆ V (T2) be
the set of vertices, different from u and w, which are adjacent to x. Note that
X ′ is not empty since v ∈ X ′. Let X = P (x,X ′), U = P (x, {u}) r {x} and
W = P (x, {w})r {x}. Observe that U tX tW t {ux,wx} = T2. See Figure 1.
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Figure 1. Tree T2.
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Figure 2. Tree D1(T ).
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Figure 3. Tree Dn(T2). Observe the enumeration of the vertices and planks of each tree D1(T ).

Now, let D1(T2) be the tree from Figure 2, where W and W ′ are copies of the
plank W ⊂ T2, U is a copy of U ⊂ T2, and X and X ′ are copies of X ⊂ T2.

Finally, let Dn(T2) be a tree consisting in n consecutive trees D1(T2) whose
planks W ′ are identified with the planks W of the following trees. See Figure 3.
We shall refer to the vertices wi, ai, ui, xi, bi, x

′
i ∈ Dn(T2) for i = 1, . . . , n as labelled

vertices.

Lemma 3.1. Let T1 and T2 be finite oriented trees such that T2 is a proper
tree and T2 9 T1. If there exists a homomorphism f : Dn(T2) → T1, then every
labelled vertex of Dn(T2) is mapped to a different vertex of T1.

Proof. Assume that T2 is a core and consider a homomorphism f : Dn(T2)→ T1.
Observe that two consecutive labelled vertices can not be mapped via f to the same
vertex since it would imply that T1 contains a loop. Now, observe that if any pair
of labelled vertices of distance two are mapped to the same vertex, it will induce
a homomorphism T2 → T1. This follows from the construction of Dn(T2). See
Figure 3. Finally, if two labelled vertices at distance greater or equal to three are
mapped to the same vertex, it would imply that T1 contains a cycle, which is a
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contradiction since T1 is a tree. We conclude that every labelled vertex has to be
mapped to a different vertex of T1. �

A digraph G is rigid if it is a core and the only automorphism f : G→ G is the
identity. We shall use the following fact.

Fact 3.2. The core of a tree is rigid.

Proof of Theorem 1.1 (sketch). Assume that T2 is a core. Let n > |V (T1)| and
consider the tree Dn(T2). It is clear that Dn(T2)→ T2. It can also be checked that
T2 9 Dn(T2) (here we might use Fact 3.2). To see that Dn(T2) 9 T1 observe that
by Lemma 3.1 every labelled vertex in Dn(T2) has to be mapped to a different
vertex in T1, but the number of labelled vertices in Dn(T2) is greater than |V (T1)|.
Thus, T1 < T1 +Dn(T2) < T2.

We end by joining T1 with Dn(T2) by a proper and long enough zig-zag. The
method is similar to the one used in the proof of the density theorem for paths
[6]. �

4. Fractal property for proper trees

Proof of Theorem 1.2 (sketch). Let n > |V (T1)| + 2|V (T2)| and consider the
tree Dn(T2). We know by Theorem 1.1 that T1 < T1 +Dn(T2) < T2.

Let T be the core of Dn(T2). By Lemma 3.1 every labelled vertex in Dn(T2) has
to be mapped to a different vertex in T . Since n > |V (T1)| + 2|V (T2)|, it follows
that T has at least |V (T1)| labelled vertex. Let y and z be the initial and ending
labelled vertex of T respectively. Let T ′ be the tree obtained from T by adding
two new vertices y′ and z′ and joining y′ to y and z′ to z by a proper zig-zag of
length 5 or 6 so y′ and z′ have the same level, as shown in Figure 4. Finally let T ′′

be the tree obtained by joining T1 with T ′ by a proper and long enough zig-zag.

y

y′

T

z z′

Figure 4. This is an example of how T ′ might look. The vertices y and z might be different
from the ones in the figure but they must be labelled vertices of Dn(T2).

Now, we shall construct an embedding Φ from the homomorphism order of the
class of oriented paths, which we know is a universal partial order [3], into the
interval [T1, T2].

Given an oriented path P , let Φ(P ) be the tree obtained by replacing each
arc v1v2 in P by a copy of T ′′ identifying v1 with y′ and v2 with z′. Observe
that T1 < Φ(P ) < T2. It is clear that any homomorphism f : P1 → P2 induces a
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homomorphism g : Φ(P1)→ Φ(P2) by identifying arcs with copies of T ′′. To see the
opposite, observe that since T is rigid by Fact 3.2, every copy of T in Φ(P1) must
be map via the identity to some copy of T in Φ(P2). It follows that adjacent copies
of T ′′ in Φ(P1) must be mapped to adjacent copies of T ′′ in Φ(P2). Hence, each
homomorphism g : Φ(P1)→ Φ(P2) induces a homomorphism f : P1 → P2. �

5. Fractal property for finite digraphs

We say that a class of digraphs ~G has the fractal property if every interval in the

homomorphism order (~G,≤) is either universal or a gap. The fractal property was
introduced by Nešetřil [4] and it has been shown recently that the class of finite
undirected graphs (or symmetric digraphs) has the fractal property [1]. In this
note, we have shown that the class of proper trees has also the fractal property
(as consequence of Theorem 1.2). However, the class of finite digraphs, and even
the class of oriented trees, is more complicated.

Nešetřil and Tardif characterised all gaps in the homomorphism order of finite
digraphs [5]. It was shown that for every tree T there exists a digraph G such
that [G,T ] is a gap, and that all gaps have this form. Theorem 1.1 contributes to
this result by implying that if [G,T ] is a gap and T is a proper tree, then G must
contain a cycle.

The characterisation of universal intervals in the homomorphism order of finite
digraphs seems to be complicated. Related to this issue, we have stated Theo-
rem 1.3. Its proof combines some techniques already used [1, 2] with some extra
arguments, and will appear in the full version of this note. This result together
with Theorem 1.2 imply that the class of finite digraphs whose cores are not paths
has the fractal property. However, intervals of the form [G,P ] where the core of
P is a path remain to be studied and characterised.
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