
Acta Math. Univ. Comenianae
Vol. LXXXVIII, 3 (2019), pp. 723–728

723

GENERALIZED TURÁN PROBLEMS FOR EVEN CYCLES

D. GERBNER, E. GYŐRI, A. METHUKU and M. VIZER

Abstract. Given a graph H and a set of graphs F , let ex(n,H,F) denote the

maximum possible number of copies of H in an F-free graph on n vertices. We
investigate the function ex(n,H,F), when H and members of F are cycles. Let Ck

denote the cycle of length k and let Ck = {C3, C4, . . . , Ck}. We highlight the main

results below.
(i) We show that ex(n,C2l, C2k) = Θ(nl) for any l, k ≥ 2. Moreover, in some

cases we determine it asymptotically.

(ii) Erdős’s Girth Conjecture states that for any positive integer k, there exist a
constant c > 0 depending only on k, and a family of graphs {Gn} such that

|V (Gn)| = n, |E(Gn)| ≥ cn1+1/k with girth more than 2k.

Solymosi and Wong proved that if this conjecture holds, then for any l ≥ 3
we have ex(n,C2l,C2l−1) = Θ(n2l/(l−1)). We prove that their result is sharp

in the sense that forbidding any other even cycle decreases the number of C2l’s

significantly.
(iii) We prove ex(n,C2l+1,C2l) = Θ(n2+1/l), provided a stronger version of Erdős’s

Girth Conjecture holds (which is known to be true when l = 2, 3, 5). This re-
sult is also sharp in the sense that forbidding one more cycle decreases the

number of C2l+1’s significantly.

1. Introduction

The Turán problem for a set of graphs F asks the following. What is the maximum
number ex(n,F) of edges that a graph on n vertices can have without containing
any F ∈ F as a subgraph? When F contains a single graph F , we simply write
ex(n, F ). This function has been intensively studied, starting with Mantel [17] who
determined ex(n,K3) and with Turán [21] who determined ex(n,Kr) for every r,
where Kr denotes the complete graph on r vertices with r ≥ 3. See [9] for surveys
on this topic.
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For some integer k let Ck denote a cycle on k vertices and let Ck denote the
set {C3, C4, . . . , Ck}. For even cycles C2k, Bondy and Simonovits [4] proved the
following upper bound.

Theorem 1 (Bondy, Simonovits [4]). For k ≥ 2 we have

ex(n,C2k) = O(n1+1/k).

The order of magnitude in the above theorem is known to be sharp only for
k = 2, 3, 5. If all the cycles in Ck are forbidden, then Alon, Hoory and Linial [1]
proved the following.

Theorem 2 (Alon, Hoory, Linial [1]). For any k ≥ 2 we have

(i) ex(n,C2k) < 1
2n

1+1/k + 1
2n,

(ii) ex(n,C2k+1) < 1
21+1/kn

1+1/k + 1
2n.

For more information on the Turán number of cycles one can consult the sur-
vey [22].

1.1. Generalized Turán problems

For two graphs H and G, let N (H,G) denote the number of copies of H in G.
Given a graph H and a set of graphs F , let

ex(n,H,F) = max
G
{N (H,G) : G is an F-free graph on n vertices.}

If F = {F}, we simply denote it by ex(n,H, F ). This problem was initiated by
Erdős [6], who determined ex(n,Ks,Kt) exactly. Concerning cycles, Bollobás and
Győri [3] proved that

(1 + o(1))
1

3
√

3
n3/2 ≤ ex(n,C3, C5) ≤ (1 + o(1))

5

4
n3/2

and this result was extended by Győri and Li [14] for ex(n,C3, C2k+1) (k > 2).
Other improvements can be found in [8].

Another notable result is to determine the value of ex(n,C5, C3) by Hatami,
Hladký, Král, Norine, and Razborov [15] and independently by Grzesik [12],
where they showed that it is equal to (n

5 )5. Very recently, the asymptotic value of
ex(n,Ck, Ck−2) was determined for every odd k by Grzesik and Kielak in [13].

1.2. Forbidding a set of cycles

The famous Girth Conjecture of Erdős [5] asserts the following.

Conjecture 3 (Erdős’s Girth Conjecture [5]). For any positive integer k, there
exist a constant c > 0 depending only on k, and a family of graphs {Gn} such that
|V (Gn)| = n, |E(Gn)| ≥ cn1+1/k and the girth of Gn is more than 2k.

This conjecture has been verified for k = 2, 3, 5, see [2, 23]. For a general k,
Sudakov and Verstraëte [20] showed that if such graphs exist, then they contain a
C2l for any l with k < l ≤ Cn, for some constant C > 0. More recently, Solymosi
and Wong [19] proved that if such graphs exist, then in fact, they contain many
C2l’s for any fixed l > k. More precisely they proved:
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Theorem 4 (Solymosi, Wong [19]). If Erdős’s Girth Conjecture holds for k,
then for every l > k we have

ex(n,C2l,C2k) = Ω(n2l/k).

Remark 1. It is easy to see that if k + 1 divides 2l, then ex(n,C2l,C2k) =
O(n2l/k). Indeed, let us associate to each C2l, one fixed ordered list of 2l/(k + 1)
edges (e1, ek+1, e2k+1, . . .), where e1 appears as the first edge (chosen arbitrarily)
on the C2l, ek+1 as the (k + 1)-th edge, e2k+1 as the (2k + 1)-th edge and so on.
Note that at most one C2l is associated to an ordered tuple (e1, ek+1, e2k+1, . . .),
because there is at most one path of length k − 1 connecting the endpoints of
any two edges (as all the short cycles are forbidden). Since there are at most
O(n1+1/k) ways to select each edge, this shows the number of C2l’s is at most
O((n1+1/k)2l/(k+1)) = O(n2l/k), showing that the bound in Theorem 4 is sharp
when k + 1 divides 2l.

2. Our results

Note that all the proofs of the results (and even more results) can be found in [10],
the article version of this extended abstract. For any two positive integers n and
l, let (n)l denote the product n(n− 1)(n− 2) . . . (n− (l − 1)).

2.1. Forbidding a cycle of given length

We determine the order of magnitude of ex(n,C2l, C2k) below.

Theorem 5.

• For any l ≥ 3 and k ≥ 2 we have ex(n,C2l, C2k) ≤ (1 + o(1)) 2l−2(k−1)l

2l nl.

• For any k > l ≥ 2 we have ex(n,C2l, C2k) ≥ (1 + o(1)) (k−1)l
2l nl.

• For any l > k ≥ 3 we have ex(n,C2l, C2k) ≥ (1 + o(1)) 1
ll
nl.

Theorem 5 and Theorem 6 (stated below) show that ex(n,C2l, C2k) = Θ(nl)
for any k, l ≥ 2, except for the lower bound in the case k = 2, which can be
easily shown by counting cycles in the orthogonal polarity graph of the classical
projective plane constructed by Erdős and Rényi [7].

We note that Theorem 5 has been proven independently by Gishboliner and
Shapira [11] and recently extended by Morrison, Roberts and Scott in [18].

Solymosi and Wong [19] asked whether a similar lower bound (to that of Theo-
rem 4) on the number of C2l’s holds, if just C2k is forbidden instead of forbidding
C2k. Theorem 5 answers this question in the negative.

Asymptotic results. We determine ex(n,C4, C2k) asymptotically.

Theorem 6. For k ≥ 2 we have

ex(n,C4, C2k) = (1 + o(1))
(k − 1)(k − 2)

4
n2.

In these theorems most constructions are bipartite, so it is natural to consider
the bipartite version of the generalized Turán function: Let exbip(n,C2l, C2k) de-
note the maximum number of copies of a C2l in a bipartite C2k-free graph on n
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vertices. Our methods give sharper bounds for exbip(n,C2l, C2k) compared to the
bounds in Theorem 5 and in the case l = 3, k = 4 we can even determine the
asymptotics.

Theorem 7. We have

exbip(n,C6, C8) = n3 + O(n5/2).

2.2. Forbidding a set of cycles

It is easy to see that when counting copies of an even cycle, forbidding an odd cycle
does not change the order of magnitude. Therefore by Theorem 4 and Remark 1
we have

Corollary 8. Suppose l ≥ 3 and Erdős’s Girth Conjecture is true for l − 1.
Then we have

ex(n,C2l,C2l−1) = Θ(n2l/(l−1)).

So the maximum number of C2l’s in a graph of girth 2l is Θ(n2l/(l−1)). We
prove that the previous statement is sharp in the sense that forbidding one more
even cycle decreases the order of magnitude significantly: More generally, we show
the following.

Theorem 9. For any k > l ≥ 3 and m ≥ 2 such that 2k 6= ml we have

ex(n,Cml,C2l−1 ∪ {C2k}) = Θ(nm).

It is easy to see that forbidding even more cycles does not decrease the order of
magnitude, as long as we do not forbid C2l itself as shown by (l, bn/lc)-theta-graph
and some isolated vertices, where for l, t ≥ 1 the (l, t)-theta-graph with endpoints
x and y is the graph obtained by joining two vertices x and y, by t internally
disjoint paths of length l.

Corollary 8 determines the order of magnitude of maximum number of C2l’s in
a graph of girth 2l. It is then very natural to consider the analogous question for
odd cycles: What is the maximum number of C2k+1’s in a graph of girth 2k + 1?
Before answering this question, we state a strong form of Erdős’s Girth Conjecture
that is known to be true for small values of k.

A graph G on n vertices, with average degree d, is called almost-regular if the
degree of every vertex of G is d + O(1).

Conjecture 10 (Strong form of Erdős’s Girth Conjecture). For any positive in-
teger k, there exists a family of almost-regular graphs {Gn} such that |V (Gn)| = n,

|E(Gn)| ≥ n1+1/k

2 and Gn is {C4, C6, . . . , C2k}-free.

Lazebnik, Ustimenko and Woldar [16] showed Conjecture 10 is true when k ∈
{2, 3, 5} using the existence of polarities of generalized polygons. We show the
following that can be seen as the ‘odd cycle analogue’ of Theorem 4.

Theorem 11. Suppose k ≥ 2 and Conjecture 10 is true for k. Then we have

ex(n,C2k+1,C2k) = (1 + o(1))
n2+ 1

k

4k + 2
.
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To show that Theorem 11 is sharp in the same sense that Theorem 9 is (in the
case of m = 2) for odd cycles, we prove that if we forbid one more even cycle, then
the order of magnitude goes down significantly:

Theorem 12. For any integers k > l ≥ 2, we have

Ω(n1+ 1
2k+1 ) = ex(n,C2l+1,C2l ∪ {C2k}) = O(n1+ l

l+1 ).

However, if the additional forbidden cycle is of odd length, we can only prove a
quadratic upper bound. We conjecture that the truth is also sub-quadratic here.

Theorem 13. For any integers k > l ≥ 2, we have

Ω(n1+ 1
2k+2 ) = ex(n,C2l+1,C2l ∪ {C2k+1}) = O(n2).
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M. Vizer, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest,

Hungary,

e-mail : vizermate@gmail.com


