GENERALIZED TURÁN PROBLEMS FOR EVEN CYCLES

D. GERBNER, E. GYŐRI, A. METHUKU and M. VIZER

Abstract

Given a graph H and a set of graphs \mathcal{F}, let $\operatorname{ex}(n, H, \mathcal{F})$ denote the maximum possible number of copies of H in an \mathcal{F}-free graph on n vertices. We investigate the function $\operatorname{ex}(n, H, \mathcal{F})$, when H and members of \mathcal{F} are cycles. Let C_{k} denote the cycle of length k and let $\mathscr{C}_{k}=\left\{C_{3}, C_{4}, \ldots, C_{k}\right\}$. We highlight the main results below. (i) We show that $\operatorname{ex}\left(n, C_{2 l}, C_{2 k}\right)=\Theta\left(n^{l}\right)$ for any $l, k \geq 2$. Moreover, in some cases we determine it asymptotically. (ii) Erdős's Girth Conjecture states that for any positive integer k, there exist a constant $c>0$ depending only on k, and a family of graphs $\left\{G_{n}\right\}$ such that $\left|V\left(G_{n}\right)\right|=n,\left|E\left(G_{n}\right)\right| \geq c n^{1+1 / k}$ with girth more than $2 k$. Solymosi and Wong proved that if this conjecture holds, then for any $l \geq 3$ we have $\operatorname{ex}\left(n, C_{2 l}, \mathscr{C}_{2 l-1}\right)=\Theta\left(n^{2 l /(l-1)}\right)$. We prove that their result is sharp in the sense that forbidding any other even cycle decreases the number of $C_{2 l}$'s significantly. (iii) We prove $\operatorname{ex}\left(n, C_{2 l+1}, \mathscr{C}_{2 l}\right)=\Theta\left(n^{2+1 / l}\right)$, provided a stronger version of Erdős's Girth Conjecture holds (which is known to be true when $l=2,3,5$). This result is also sharp in the sense that forbidding one more cycle decreases the number of $C_{2 l+1}$'s significantly.

1. Introduction

The Turán problem for a set of graphs \mathcal{F} asks the following. What is the maximum number ex (n, \mathcal{F}) of edges that a graph on n vertices can have without containing any $F \in \mathcal{F}$ as a subgraph? When \mathcal{F} contains a single graph F, we simply write $\operatorname{ex}(n, F)$. This function has been intensively studied, starting with Mantel $[\mathbf{1 7}]$ who determined ex $\left(n, K_{3}\right)$ and with Turán [21] who determined ex $\left(n, K_{r}\right)$ for every r, where K_{r} denotes the complete graph on r vertices with $r \geq 3$. See [9] for surveys on this topic.

Received June 6, 2019.
2010 Mathematics Subject Classification. Primary 05D05; Secondary 05C35.
Research of D. Gerbner was supported by the János Bolyai Research Fellowship of the Hungarian Academy of Sciences and the National Research, Development and Innovation Office, NKFIH project K 116769.
Research of A. Methuku was supported by the National Research, Development and Innovation Office, NKFIH project K 116769.
Research of E. Győri was supported by the National Research, Development and Innovation Office, NKFIH project K 116769.
Research of M. Vizer was supported by the National Research, Development and Innovation Office, NKFIH projects SNN 129364 and KH 130371.

For some integer k let C_{k} denote a cycle on k vertices and let \mathscr{C}_{k} denote the set $\left\{C_{3}, C_{4}, \ldots, C_{k}\right\}$. For even cycles $C_{2 k}$, Bondy and Simonovits [4] proved the following upper bound.

Theorem 1 (Bondy, Simonovits [4]). For $k \geq 2$ we have

$$
\operatorname{ex}\left(n, C_{2 k}\right)=O\left(n^{1+1 / k}\right)
$$

The order of magnitude in the above theorem is known to be sharp only for $k=2,3,5$. If all the cycles in \mathscr{C}_{k} are forbidden, then Alon, Hoory and Linial [1] proved the following.

Theorem 2 (Alon, Hoory, Linial [1]). For any $k \geq 2$ we have
(i) $\operatorname{ex}\left(n, \mathscr{C}_{2 k}\right)<\frac{1}{2} n^{1+1 / k}+\frac{1}{2} n$,
(ii) $\operatorname{ex}\left(n, \mathscr{C}_{2 k+1}\right)<\frac{1}{2^{1+1 / k}} n^{1+1 / k}+\frac{1}{2} n$.

For more information on the Turán number of cycles one can consult the survey $[\mathbf{2 2}]$.

1.1. Generalized Turán problems

For two graphs H and G, let $\mathcal{N}(H, G)$ denote the number of copies of H in G. Given a graph H and a set of graphs \mathcal{F}, let

$$
\operatorname{ex}(n, H, \mathcal{F})=\max _{G}\{\mathcal{N}(H, G): G \text { is an } \mathcal{F} \text {-free graph on } n \text { vertices. }\}
$$

If $\mathcal{F}=\{F\}$, we simply denote it by ex (n, H, F). This problem was initiated by Erdős [6], who determined ex $\left(n, K_{s}, K_{t}\right)$ exactly. Concerning cycles, Bollobás and Győri [3] proved that

$$
(1+o(1)) \frac{1}{3 \sqrt{3}} n^{3 / 2} \leq \operatorname{ex}\left(n, C_{3}, C_{5}\right) \leq(1+o(1)) \frac{5}{4} n^{3 / 2}
$$

and this result was extended by Győri and $\mathrm{Li}[\mathbf{1 4}]$ for $\operatorname{ex}\left(n, C_{3}, C_{2 k+1}\right)(k>2)$. Other improvements can be found in [8].

Another notable result is to determine the value of $\operatorname{ex}\left(n, C_{5}, C_{3}\right)$ by Hatami, Hladký, Král, Norine, and Razborov [15] and independently by Grzesik [12], where they showed that it is equal to $\left(\frac{n}{5}\right)^{5}$. Very recently, the asymptotic value of ex $\left(n, C_{k}, C_{k-2}\right)$ was determined for every odd k by Grzesik and Kielak in [13].

1.2. Forbidding a set of cycles

The famous Girth Conjecture of Erdős [5] asserts the following.
Conjecture 3 (Erdős's Girth Conjecture [5]). For any positive integer k, there exist a constant $c>0$ depending only on k, and a family of graphs $\left\{G_{n}\right\}$ such that $\left|V\left(G_{n}\right)\right|=n,\left|E\left(G_{n}\right)\right| \geq c n^{1+1 / k}$ and the girth of G_{n} is more than $2 k$.

This conjecture has been verified for $k=2,3,5$, see $[\mathbf{2}, \mathbf{2 3}]$. For a general k, Sudakov and Verstraëte [20] showed that if such graphs exist, then they contain a $C_{2 l}$ for any l with $k<l \leq C n$, for some constant $C>0$. More recently, Solymosi and Wong [19] proved that if such graphs exist, then in fact, they contain many $C_{2 l}$'s for any fixed $l>k$. More precisely they proved:

Theorem 4 (Solymosi, Wong [19]). If Erdős's Girth Conjecture holds for k, then for every $l>k$ we have

$$
\operatorname{ex}\left(n, C_{2 l}, \mathscr{C}_{2 k}\right)=\Omega\left(n^{2 l / k}\right)
$$

Remark 1. It is easy to see that if $k+1$ divides $2 l$, then $\operatorname{ex}\left(n, C_{2 l}, \mathscr{C}_{2 k}\right)=$ $O\left(n^{2 l / k}\right)$. Indeed, let us associate to each $C_{2 l}$, one fixed ordered list of $2 l /(k+1)$ edges $\left(e_{1}, e_{k+1}, e_{2 k+1}, \ldots\right)$, where e_{1} appears as the first edge (chosen arbitrarily) on the $C_{2 l}, e_{k+1}$ as the $(k+1)$-th edge, $e_{2 k+1}$ as the $(2 k+1)$-th edge and so on. Note that at most one $C_{2 l}$ is associated to an ordered tuple ($e_{1}, e_{k+1}, e_{2 k+1}, \ldots$), because there is at most one path of length $k-1$ connecting the endpoints of any two edges (as all the short cycles are forbidden). Since there are at most $O\left(n^{1+1 / k}\right)$ ways to select each edge, this shows the number of $C_{2 l}$'s is at most $O\left(\left(n^{1+1 / k}\right)^{2 l /(k+1)}\right)=O\left(n^{2 l / k}\right)$, showing that the bound in Theorem 4 is sharp when $k+1$ divides $2 l$.

2. OUR RESUltS

Note that all the proofs of the results (and even more results) can be found in [10], the article version of this extended abstract. For any two positive integers n and l, let $(n)_{l}$ denote the product $n(n-1)(n-2) \ldots(n-(l-1))$.

2.1. Forbidding a cycle of given length

We determine the order of magnitude of ex $\left(n, C_{2 l}, C_{2 k}\right)$ below.

Theorem 5.

- For any $l \geq 3$ and $k \geq 2$ we have $\operatorname{ex}\left(n, C_{2 l}, C_{2 k}\right) \leq(1+o(1))^{\frac{2}{}^{l-2}(k-1)^{l}} \frac{2 l}{2 l} n^{l}$.
- For any $k>l \geq 2$ we have $\operatorname{ex}\left(n, C_{2 l}, C_{2 k}\right) \geq(1+o(1)) \frac{(k-1)_{l}}{2 l} n^{l}$.
- For any $l>k \geq 3$ we have $\operatorname{ex}\left(n, C_{2 l}, C_{2 k}\right) \geq(1+o(1)) \frac{1}{l^{l}} n^{l}$.

Theorem 5 and Theorem 6 (stated below) show that ex $\left(n, C_{2 l}, C_{2 k}\right)=\Theta\left(n^{l}\right)$ for any $k, l \geq 2$, except for the lower bound in the case $k=2$, which can be easily shown by counting cycles in the orthogonal polarity graph of the classical projective plane constructed by Erdős and Rényi [7].

We note that Theorem 5 has been proven independently by Gishboliner and Shapira [11] and recently extended by Morrison, Roberts and Scott in [18].

Solymosi and Wong [19] asked whether a similar lower bound (to that of Theorem 4) on the number of $C_{2 l}$'s holds, if just $C_{2 k}$ is forbidden instead of forbidding $\mathscr{C}_{2 k}$. Theorem 5 answers this question in the negative.

Asymptotic results. We determine ex $\left(n, C_{4}, C_{2 k}\right)$ asymptotically.
Theorem 6. For $k \geq 2$ we have

$$
\operatorname{ex}\left(n, C_{4}, C_{2 k}\right)=(1+o(1)) \frac{(k-1)(k-2)}{4} n^{2} .
$$

In these theorems most constructions are bipartite, so it is natural to consider the bipartite version of the generalized Turán function: Let ex ${ }_{\text {bip }}\left(n, C_{2 l}, C_{2 k}\right)$ denote the maximum number of copies of a $C_{2 l}$ in a bipartite $C_{2 k}$-free graph on n
vertices. Our methods give sharper bounds for $\operatorname{ex}_{\text {bip }}\left(n, C_{2 l}, C_{2 k}\right)$ compared to the bounds in Theorem 5 and in the case $l=3, k=4$ we can even determine the asymptotics.

Theorem 7. We have

$$
\operatorname{ex}_{\mathrm{bip}}\left(n, C_{6}, C_{8}\right)=n^{3}+O\left(n^{5 / 2}\right)
$$

2.2. Forbidding a set of cycles

It is easy to see that when counting copies of an even cycle, forbidding an odd cycle does not change the order of magnitude. Therefore by Theorem 4 and Remark 1 we have

Corollary 8. Suppose $l \geq 3$ and Erdös's Girth Conjecture is true for $l-1$. Then we have

$$
\operatorname{ex}\left(n, C_{2 l}, \mathscr{C}_{2 l-1}\right)=\Theta\left(n^{2 l /(l-1)}\right)
$$

So the maximum number of $C_{2 l}$'s in a graph of girth $2 l$ is $\Theta\left(n^{2 l /(l-1)}\right)$. We prove that the previous statement is sharp in the sense that forbidding one more even cycle decreases the order of magnitude significantly: More generally, we show the following.

Theorem 9. For any $k>l \geq 3$ and $m \geq 2$ such that $2 k \neq m l$ we have

$$
\operatorname{ex}\left(n, C_{m l}, \mathscr{C}_{2 l-1} \cup\left\{C_{2 k}\right\}\right)=\Theta\left(n^{m}\right)
$$

It is easy to see that forbidding even more cycles does not decrease the order of magnitude, as long as we do not forbid $C_{2 l}$ itself as shown by $(l,\lfloor n / l\rfloor)$-theta-graph and some isolated vertices, where for $l, t \geq 1$ the (l, t)-theta-graph with endpoints x and y is the graph obtained by joining two vertices x and y, by t internally disjoint paths of length l.

Corollary 8 determines the order of magnitude of maximum number of $C_{2 l}$'s in a graph of girth $2 l$. It is then very natural to consider the analogous question for odd cycles: What is the maximum number of $C_{2 k+1}$'s in a graph of girth $2 k+1$? Before answering this question, we state a strong form of Erdős's Girth Conjecture that is known to be true for small values of k.

A graph G on n vertices, with average degree d, is called almost-regular if the degree of every vertex of G is $d+O(1)$.

Conjecture 10 (Strong form of Erdős's Girth Conjecture). For any positive integer k, there exists a family of almost-regular graphs $\left\{G_{n}\right\}$ such that $\left|V\left(G_{n}\right)\right|=n$, $\left|E\left(G_{n}\right)\right| \geq \frac{n^{1+1 / k}}{2}$ and G_{n} is $\left\{C_{4}, C_{6}, \ldots, C_{2 k}\right\}$-free.

Lazebnik, Ustimenko and Woldar [16] showed Conjecture 10 is true when $k \in$ $\{2,3,5\}$ using the existence of polarities of generalized polygons. We show the following that can be seen as the 'odd cycle analogue' of Theorem 4.

Theorem 11. Suppose $k \geq 2$ and Conjecture 10 is true for k. Then we have

$$
\operatorname{ex}\left(n, C_{2 k+1}, \mathscr{C}_{2 k}\right)=(1+o(1)) \frac{n^{2+\frac{1}{k}}}{4 k+2}
$$

To show that Theorem 11 is sharp in the same sense that Theorem 9 is (in the case of $m=2$) for odd cycles, we prove that if we forbid one more even cycle, then the order of magnitude goes down significantly:

Theorem 12. For any integers $k>l \geq 2$, we have

$$
\Omega\left(n^{1+\frac{1}{2 k+1}}\right)=\operatorname{ex}\left(n, C_{2 l+1}, \mathscr{C}_{2 l} \cup\left\{C_{2 k}\right\}\right)=O\left(n^{1+\frac{l}{l+1}}\right)
$$

However, if the additional forbidden cycle is of odd length, we can only prove a quadratic upper bound. We conjecture that the truth is also sub-quadratic here.

Theorem 13. For any integers $k>l \geq 2$, we have

$$
\Omega\left(n^{1+\frac{1}{2 k+2}}\right)=\operatorname{ex}\left(n, C_{2 l+1}, \mathscr{C}_{2 l} \cup\left\{C_{2 k+1}\right\}\right)=O\left(n^{2}\right)
$$

Acknowledgment. We would like to thank the reviewers for careful reading of the extended abstract. Their suggestions highly improved the presentation of our results.

References

1. Alon N., Hoory S. and Linial N., The Moore bound for irregular graphs, Graphs Combin. 18 (2002), 53-57.
2. Benson C. T., Minimal regular graphs of girth eight and twelve, Canad. J. Math. 18 (1966), 1091-1094.
3. Bollobás B. and Győri E., Pentagons vs. triangles, Discrete Math. 308 (2008), 4332-4336.
4. Bondy J. A. and Simonovits M., Cycles of even length in graphs, J. Combin. Theory Ser. B 16 (1974), 97-105.
5. Erdős P., Extremal problems in graph theory, in: Proceedings Symp. Theory of Graphsband its Applications, 1964, 29-36.
6. Erdős P., On the number of complete subgraphs contained in certain graphs, Magyar Tud. Akad. Mat. Kut. Int. Közl. 7 (1962), 459-474.
7. Erdős P. and Rényi A., On a problem in the theory of graphs, Publ. Math. Inst. Hungar. Acad. Sci. 7 (1962), 215-235, (in Hungarian).
8. Füredi Z. and Özkahya L., On 3-uniform hypergraphs without a cycle of a given length, Discrete Appl. Math. 216 (2017), 582-588.
9. Füredi Z. and Simonovits M., The history of degenerate (bipartite) extremal graph problems, in: Erdős Centennial, Springer, 2013, 169-264.
10. Gerbner D., Győri E., Methuku A. and Vizer M., Generalized Turán problems for even cycles, arXiv:1712.07079.
11. Gishboliner L. and Shapira A., A generalized Turán problem and its applications, in: Proceedings of STOC 2018 Theory Fest: 50th Annual ACM Symposium on the Theory of Computing, 2018, Los Angeles, CA, 760-772.
12. Grzesik A., On the maximum number of five-cycles in a triangle-free graph, J. Combin. Theory Ser. B 102 (2012), 1061-1066.
13. Grzesik A. and Kielak B., On the maximum number of odd cycles in graphs without smaller odd cycles, arXiv:1806.09953.
14. Győri E. and Li H., The maximum number of triangles in $C_{2 k+1}$-free graphs, Combin. Probab. Comput. 21 (2011), 187-191.
15. Hatami H., Hladký J., Král D., Norine S. and Razborov A., On the number of pentagons in triangle-free graphs, J. Combin. Theory Ser. A 120 (2013), 722-732.
16. Lazebnik F., Ustimenko V. A. and Woldar A. J., Polarities and $2 k$-cycle-free graphs, Discrete Math. 197/198 (1999), 503-513.
17. Mantel W., Problem 28, Wiskundige Opgaven 10 (1907), 60-61.
18. Morrison N, Roberts A. and Scott A., Maximising the number of cycles in graphs with forbidden subgraphs, arXiv:1902.08133.
19. Solymosi J. and Wong C., Cycles in graphs of fixed girth with large size, European J. Combin. 62 (2017), 124-131.
20. Sudakov B. and Verstraëte J., Cycle lengths in sparse graphs, Combinatorica 28 (2008), 357-372.
21. Turán P., On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941), 436-452, (in Hungarian).
22. Verstraëte J., Extremal problems for cycles in graphs, in: Recent Trends in Combinatorics, Springer, 2016, 83-116.
23. Wenger R., Extremal graphs with no C_{4} 's, C_{6} 's, or C_{10} 's, J. Combin. Theory Ser. B 52 (1991), 113-116.
D. Gerbner, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary,
e-mail: gerbner@renyi.hu
E. Győri, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary,
e-mail: gyori.ervin@renyi.mta.hu
A. Methuku, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,
e-mail: abhishekmethuku@gmail.com
M. Vizer, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary,
e-mail: vizermate@gmail.com
