GENERALIZED TURÁN PROBLEMS FOR EVEN CYCLES

D. GERBNER, E. GYŐRI, A. METHUKU AND M. VIZER

ABSTRACT. Given a graph H and a set of graphs \mathcal{F} , let $ex(n, H, \mathcal{F})$ denote the maximum possible number of copies of H in an \mathcal{F} -free graph on n vertices. We investigate the function $ex(n, H, \mathcal{F})$, when H and members of \mathcal{F} are cycles. Let C_k denote the cycle of length k and let $\mathscr{C}_k = \{C_3, C_4, \ldots, C_k\}$. We highlight the main results below.

(i) We show that $ex(n, C_{2l}, C_{2k}) = \Theta(n^l)$ for any $l, k \ge 2$. Moreover, in some cases we determine it asymptotically.

(ii) Erdős's Girth Conjecture states that for any positive integer k, there exist a constant c > 0 depending only on k, and a family of graphs $\{G_n\}$ such that $|V(G_n)| = n, |E(G_n)| \ge cn^{1+1/k}$ with girth more than 2k.

Solymosi and Wong proved that if this conjecture holds, then for any $l \geq 3$ we have $ex(n, C_{2l}, \mathscr{C}_{2l-1}) = \Theta(n^{2l/(l-1)})$. We prove that their result is sharp in the sense that forbidding any other even cycle decreases the number of C_{2l} 's significantly.

(iii) We prove $\exp(n, C_{2l+1}, \mathscr{C}_{2l}) = \Theta(n^{2+1/l})$, provided a stronger version of Erdős's Girth Conjecture holds (which is known to be true when l = 2, 3, 5). This result is also sharp in the sense that forbidding one more cycle decreases the number of C_{2l+1} 's significantly.

1. INTRODUCTION

The Turán problem for a set of graphs \mathcal{F} asks the following. What is the maximum number $\operatorname{ex}(n, \mathcal{F})$ of edges that a graph on n vertices can have without containing any $F \in \mathcal{F}$ as a subgraph? When \mathcal{F} contains a single graph F, we simply write $\operatorname{ex}(n, F)$. This function has been intensively studied, starting with Mantel [17] who determined $\operatorname{ex}(n, K_3)$ and with Turán [21] who determined $\operatorname{ex}(n, K_r)$ for every r, where K_r denotes the complete graph on r vertices with $r \geq 3$. See [9] for surveys on this topic.

Received June 6, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 05D05; Secondary 05C35.

Research of D. Gerbner was supported by the János Bolyai Research Fellowship of the Hungarian Academy of Sciences and the National Research, Development and Innovation Office, NKFIH project K 116769.

Research of A. Methuku was supported by the National Research, Development and Innovation Office, NKFIH project K 116769.

Research of E. Győri was supported by the National Research, Development and Innovation Office, NKFIH project K 116769.

Research of M. Vizer was supported by the National Research, Development and Innovation Office, NKFIH projects SNN 129364 and KH 130371.

For some integer k let C_k denote a cycle on k vertices and let \mathscr{C}_k denote the set $\{C_3, C_4, \ldots, C_k\}$. For even cycles C_{2k} , Bondy and Simonovits [4] proved the following upper bound.

Theorem 1 (Bondy, Simonovits [4]). For $k \ge 2$ we have

$$ex(n, C_{2k}) = O(n^{1+1/k}).$$

The order of magnitude in the above theorem is known to be sharp only for k = 2, 3, 5. If all the cycles in \mathscr{C}_k are forbidden, then Alon, Hoory and Linial [1] proved the following.

Theorem 2 (Alon, Hoory, Linial [1]). For any $k \ge 2$ we have

- (i) $ex(n, \mathscr{C}_{2k}) < \frac{1}{2}n^{1+1/k} + \frac{1}{2}n$, (ii) $ex(n, \mathscr{C}_{2k+1}) < \frac{1}{2^{1+1/k}} n^{1+1/k} + \frac{1}{2}n.$

For more information on the Turán number of cycles one can consult the survey [**22**].

1.1. Generalized Turán problems

For two graphs H and G, let $\mathcal{N}(H,G)$ denote the number of copies of H in G. Given a graph H and a set of graphs \mathcal{F} , let

 $ex(n, H, \mathcal{F}) = \max_{C} \{ \mathcal{N}(H, G) : G \text{ is an } \mathcal{F}\text{-free graph on } n \text{ vertices.} \}$

If $\mathcal{F} = \{F\}$, we simply denote it by ex(n, H, F). This problem was initiated by Erdős [6], who determined $ex(n, K_s, K_t)$ exactly. Concerning cycles, Bollobás and Győri **[3**] proved that

$$(1+o(1))\frac{1}{3\sqrt{3}}n^{3/2} \le \exp(n, C_3, C_5) \le (1+o(1))\frac{5}{4}n^{3/2}$$

and this result was extended by Győri and Li [14] for $ex(n, C_3, C_{2k+1})$ (k > 2). Other improvements can be found in [8].

Another notable result is to determine the value of $ex(n, C_5, C_3)$ by Hatami, Hladký, Král, Norine, and Razborov [15] and independently by Grzesik [12], where they showed that it is equal to $(\frac{n}{5})^5$. Very recently, the asymptotic value of $ex(n, C_k, C_{k-2})$ was determined for every odd k by Grzesik and Kielak in [13].

1.2. Forbidding a set of cycles

The famous Girth Conjecture of Erdős [5] asserts the following.

Conjecture 3 (Erdős's Girth Conjecture [5]). For any positive integer k, there exist a constant c > 0 depending only on k, and a family of graphs $\{G_n\}$ such that $|V(G_n)| = n$, $|E(G_n)| \ge cn^{1+1/k}$ and the girth of G_n is more than 2k.

This conjecture has been verified for k = 2, 3, 5, see [2, 23]. For a general k, Sudakov and Verstraëte [20] showed that if such graphs exist, then they contain a C_{2l} for any l with $k < l \leq Cn$, for some constant C > 0. More recently, Solymosi and Wong [19] proved that if such graphs exist, then in fact, they contain many C_{2l} 's for any fixed l > k. More precisely they proved:

Theorem 4 (Solymosi, Wong [19]). If Erdős's Girth Conjecture holds for k, then for every l > k we have

$$\operatorname{ex}(n, C_{2l}, \mathscr{C}_{2k}) = \Omega(n^{2l/k}).$$

Remark 1. It is easy to see that if k + 1 divides 2l, then $ex(n, C_{2l}, \mathscr{C}_{2k}) =$ $O(n^{2l/k})$. Indeed, let us associate to each C_{2l} , one fixed ordered list of 2l/(k+1)edges $(e_1, e_{k+1}, e_{2k+1}, \ldots)$, where e_1 appears as the first edge (chosen arbitrarily) on the C_{2l} , e_{k+1} as the (k+1)-th edge, e_{2k+1} as the (2k+1)-th edge and so on. Note that at most one C_{2l} is associated to an ordered tuple $(e_1, e_{k+1}, e_{2k+1}, \ldots)$, because there is at most one path of length k-1 connecting the endpoints of any two edges (as all the short cycles are forbidden). Since there are at most $O(n^{1+1/k})$ ways to select each edge, this shows the number of C_{2l} 's is at most $O((n^{1+1/k})^{2l/(k+1)}) = O(n^{2l/k})$, showing that the bound in Theorem 4 is sharp when k+1 divides 2l.

2. Our results

Note that all the proofs of the results (and even more results) can be found in [10], the article version of this extended abstract. For any two positive integers n and l, let $(n)_l$ denote the product $n(n-1)(n-2)\dots(n-(l-1))$.

2.1. Forbidding a cycle of given length

We determine the order of magnitude of $ex(n, C_{2l}, C_{2k})$ below.

Theorem 5.

- For any $l \ge 3$ and $k \ge 2$ we have $ex(n, C_{2l}, C_{2k}) \le (1 + o(1))\frac{2^{l-2}(k-1)^l}{2l}n^l$. For any $k > l \ge 2$ we have $ex(n, C_{2l}, C_{2k}) \ge (1 + o(1))\frac{(k-1)_l}{2l}n^l$. For any $l > k \ge 3$ we have $ex(n, C_{2l}, C_{2k}) \ge (1 + o(1))\frac{1}{l^l}n^l$.

Theorem 5 and Theorem 6 (stated below) show that $e_n(n, C_{2l}, C_{2k}) = \Theta(n^l)$ for any $k, l \geq 2$, except for the lower bound in the case k = 2, which can be easily shown by counting cycles in the orthogonal polarity graph of the classical projective plane constructed by Erdős and Rényi [7].

We note that Theorem 5 has been proven independently by Gishboliner and Shapira [11] and recently extended by Morrison, Roberts and Scott in [18].

Solymosi and Wong [19] asked whether a similar lower bound (to that of Theorem 4) on the number of C_{2l} 's holds, if just C_{2k} is forbidden instead of forbidding \mathscr{C}_{2k} . Theorem 5 answers this question in the negative.

Asymptotic results. We determine $ex(n, C_4, C_{2k})$ asymptotically.

Theorem 6. For $k \geq 2$ we have

$$ex(n, C_4, C_{2k}) = (1 + o(1))\frac{(k-1)(k-2)}{4}n^2.$$

In these theorems most constructions are bipartite, so it is natural to consider the bipartite version of the generalized Turán function: Let $\exp(n, C_{2l}, C_{2k})$ denote the maximum number of copies of a C_{2l} in a bipartite C_{2k} -free graph on n vertices. Our methods give sharper bounds for $\exp(n, C_{2l}, C_{2k})$ compared to the bounds in Theorem 5 and in the case l = 3, k = 4 we can even determine the asymptotics.

Theorem 7. We have

$$\exp(n, C_6, C_8) = n^3 + O(n^{5/2}).$$

2.2. Forbidding a set of cycles

It is easy to see that when counting copies of an even cycle, forbidding an odd cycle does not change the order of magnitude. Therefore by Theorem 4 and Remark 1 we have

Corollary 8. Suppose $l \ge 3$ and Erdős's Girth Conjecture is true for l-1. Then we have

$$\exp(n, C_{2l}, \mathscr{C}_{2l-1}) = \Theta(n^{2l/(l-1)})$$

So the maximum number of C_{2l} 's in a graph of girth 2l is $\Theta(n^{2l/(l-1)})$. We prove that the previous statement is sharp in the sense that forbidding one more even cycle decreases the order of magnitude significantly: More generally, we show the following.

Theorem 9. For any $k > l \ge 3$ and $m \ge 2$ such that $2k \ne ml$ we have

$$\operatorname{ex}(n, C_{ml}, \mathscr{C}_{2l-1} \cup \{C_{2k}\}) = \Theta(n^m).$$

It is easy to see that forbidding even more cycles does not decrease the order of magnitude, as long as we do not forbid C_{2l} itself as shown by $(l, \lfloor n/l \rfloor)$ -theta-graph and some isolated vertices, where for $l, t \geq 1$ the (l, t)-theta-graph with endpoints x and y is the graph obtained by joining two vertices x and y, by t internally disjoint paths of length l.

Corollary 8 determines the order of magnitude of maximum number of C_{2l} 's in a graph of girth 2l. It is then very natural to consider the analogous question for odd cycles: What is the maximum number of C_{2k+1} 's in a graph of girth 2k + 1? Before answering this question, we state a strong form of Erdős's Girth Conjecture that is known to be true for small values of k.

A graph G on n vertices, with average degree d, is called *almost-regular* if the degree of every vertex of G is d + O(1).

Conjecture 10 (Strong form of Erdős's Girth Conjecture). For any positive integer k, there exists a family of almost-regular graphs $\{G_n\}$ such that $|V(G_n)| = n$, $|E(G_n)| \ge \frac{n^{1+1/k}}{2}$ and G_n is $\{C_4, C_6, \ldots, C_{2k}\}$ -free.

Lazebnik, Ustimenko and Woldar [16] showed Conjecture 10 is true when $k \in \{2, 3, 5\}$ using the existence of polarities of generalized polygons. We show the following that can be seen as the 'odd cycle analogue' of Theorem 4.

Theorem 11. Suppose $k \ge 2$ and Conjecture 10 is true for k. Then we have

$$ex(n, C_{2k+1}, \mathscr{C}_{2k}) = (1 + o(1)) \frac{n^{2+\frac{1}{k}}}{4k+2}$$

726

To show that Theorem 11 is sharp in the same sense that Theorem 9 is (in the case of m = 2) for odd cycles, we prove that if we forbid one more even cycle, then the order of magnitude goes down significantly:

Theorem 12. For any integers $k > l \ge 2$, we have

$$\Omega(n^{1+\frac{1}{2k+1}}) = \exp(n, C_{2l+1}, \mathscr{C}_{2l} \cup \{C_{2k}\}) = O(n^{1+\frac{\epsilon}{l+1}}).$$

However, if the additional forbidden cycle is of odd length, we can only prove a quadratic upper bound. We conjecture that the truth is also sub-quadratic here.

Theorem 13. For any integers $k > l \ge 2$, we have

$$\Omega(n^{1+\frac{1}{2k+2}}) = \exp(n, C_{2l+1}, \mathscr{C}_{2l} \cup \{C_{2k+1}\}) = O(n^2)$$

Acknowledgment. We would like to thank the reviewers for careful reading of the extended abstract. Their suggestions highly improved the presentation of our results.

References

- Alon N., Hoory S. and Linial N., The Moore bound for irregular graphs, Graphs Combin. 18 (2002), 53–57.
- Benson C. T., Minimal regular graphs of girth eight and twelve, Canad. J. Math. 18 (1966), 1091–1094.
- Bollobás B. and Győri E., Pentagons vs. triangles, Discrete Math. 308 (2008), 4332–4336.
 Bondy J. A. and Simonovits M., Cycles of even length in graphs, J. Combin. Theory Ser. B

16 (1974), 97–105.

- Erdős P., Extremal problems in graph theory, in: Proceedings Symp. Theory of Graphsband its Applications, 1964, 29–36.
- Erdős P., On the number of complete subgraphs contained in certain graphs, Magyar Tud. Akad. Mat. Kut. Int. Közl. 7 (1962), 459–474.
- Erdős P. and Rényi A., On a problem in the theory of graphs, Publ. Math. Inst. Hungar. Acad. Sci. 7 (1962), 215–235, (in Hungarian).
- Füredi Z. and Özkahya L., On 3-uniform hypergraphs without a cycle of a given length, Discrete Appl. Math. 216 (2017), 582–588.
- Füredi Z. and Simonovits M., The history of degenerate (bipartite) extremal graph problems, in: Erdős Centennial, Springer, 2013, 169–264.
- Gerbner D., Győri E., Methuku A. and Vizer M., Generalized Turán problems for even cycles, arXiv:1712.07079.
- Gishboliner L. and Shapira A., A generalized Turán problem and its applications, in: Proceedings of STOC 2018 Theory Fest: 50th Annual ACM Symposium on the Theory of Computing, 2018, Los Angeles, CA, 760–772.
- Grzesik A., On the maximum number of five-cycles in a triangle-free graph, J. Combin. Theory Ser. B 102 (2012), 1061–1066.
- Grzesik A. and Kielak B., On the maximum number of odd cycles in graphs without smaller odd cycles, arXiv:1806.09953.
- 14. Győri E. and Li H., The maximum number of triangles in C_{2k+1} -free graphs, Combin. Probab. Comput. 21 (2011), 187–191.
- Hatami H., Hladký J., Král D., Norine S. and Razborov A., On the number of pentagons in triangle-free graphs, J. Combin. Theory Ser. A 120 (2013), 722–732.
- Lazebnik F., Ustimenko V. A. and Woldar A. J., *Polarities and 2k-cycle-free graphs*, Discrete Math. 197/198 (1999), 503–513.
- 17. Mantel W., Problem 28, Wiskundige Opgaven 10 (1907), 60-61.

- Morrison N, Roberts A. and Scott A., Maximising the number of cycles in graphs with forbidden subgraphs, arXiv:1902.08133.
- Solymosi J. and Wong C., Cycles in graphs of fixed girth with large size, European J. Combin.
 62 (2017), 124–131.
- 20. Sudakov B. and Verstraëte J., Cycle lengths in sparse graphs, Combinatorica 28 (2008), 357–372.
- Turán P., On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941), 436–452, (in Hungarian).
- **22.** Verstraëte J., *Extremal problems for cycles in graphs*, in: Recent Trends in Combinatorics, Springer, 2016, 83–116.
- **23.** Wenger R., Extremal graphs with no C_4 's, C_6 's, or C_{10} 's, J. Combin. Theory Ser. B **52** (1991), 113–116.

D. Gerbner, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary,

e-mail: gerbner@renyi.hu

E. Győri, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary,

e-mail: gyori.ervin@renyi.mta.hu

A. Methuku, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, *e-mail*: abhishekmethuku@gmail.com

M. Vizer, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary,

e-mail: vizermate@gmail.com