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SPLITTING GROUPS WITH CUBIC CAYLEY GRAPHS

OF CONNECTIVITY TWO

B. MIRAFTAB and K. STAVROPOULOS

Abstract. A group G splits over a subgroup C if G is either a free product

with amalgamation A ∗
C

B or an HNN-extension G = A ∗
C

(t). We invoke tree-

decompositions and Bass-Serre theory, and classify all infinite groups which admit

cubic Cayley graphs of connectivity two in terms of splittings over a subgroup.

1. Introduction

A finitely generated group G is called planar if it admits a generating set S such
that the Cayley graph Cay(G,S) is planar. In that case, S is called a planar
generating set. For the first time, in 1896, Maschke [12] characterized all finite
groups admitting planar Cayley graphs. Infinite planar groups attracted more
attention, as some of them are related to surface and Fuchsian groups [15, section
4.10] which play a substantial role in complex analysis, see survey [15]. Hamann
[9] uses a combinatorial method in order to show that planar groups are finitely
presented. His method is based on tree-decompositions, a crucial tool of graph
minor theory which we also utilize extensively in this paper.

A related topic to infinite planar Cayley graphs is the connectivity of Cayley
graphs, see [5, 7, 8]. Studying connectivity of infinite graphs goes back to 1971
by Jung, see [11]. In [5], Droms et al. characterized planar groups with low
connectivity in terms of the fundamental group of the graph of groups.

Later, Georgakopoulos [7] determines the presentations of all groups whose
Cayley graphs are cubic with connectivity 2. His method does not assert anything
regarding (and is, in a sense, independent of) splitting the group over subgroups to
obtain its structure. By combining tree-decompositions and Bass-Serre theory, we
give a short proof for the full characterization of groups with cubic Cayley graphs
of connectivity 2 via the following theorem:

Theorem 1.1. Let G = 〈S〉 be a group such that Γ = Cay(G,S) is a cubic
graph of connectivity two. Then G is isomorphic to one of Zn ∗ Z2, D2n ∗

Z2

(t),

D2n ∗
Z2

D2m, Z2n ∗
Z2

D2m, D∞ ∗
Z2

D2m.
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As a consequence of Theorem 1.1, we obtain as a corollary the results of [7].
For a full version of the paper, see [13].

2. Preliminaries

Our terminology of groups and graphs is standard. We refer the reader to [14] for
Bass-Serre theory and [4] for graph theory for any notation missing.

2.1. Graphs

Throughout this paper, Γ always denotes a connected locally finite graph with
vertex set V (Γ) and edge set E(Γ).

A separation of Γ is an ordered pair (A,B) such that Γ[A] ∪ Γ[B] = Γ. If
|(A,B)| = k, we say that (A,B) is a k-separation. The set of separations of Γ
can be equipped with the following partial order: (A,B) ≤ (C,D) if A ⊆ C and
B ⊇ D. We say that (A,B) is nested with (C,D) if (A,B) is comparable to either
(C,D) or (D,C). A separation (A,B) distinguishes two ends ω1 and ω2 if ω1 has
a tail in ArB and ω2 has a tail in BrA or vise versa. Moreover, it distinguishes
ω1 and ω2 efficiently if there is no separation (C,D) distinguishing ω1 and ω2 such
that |(C,D)| < |(A,B)|. We note that if (A,B) distinguishes two ends efficiently,
then (A,B) is a tight separation. Two ends ω1 and ω2 are k-distinguishable if there
is a separation of order k distinguishing ω1 and ω2 efficiently. Hamann et al. [3]
proved the following theorem:

Theorem 2.1. Let Γ be a locally finite graph with more than one end. For
each k ∈ N, there is a nested set N of tight separations of Γ distinguishing all
k-distinguishable ends efficiently. �

Let Γ be an arbitrary connected graph. A tree-decomposition of Γ is a pair
(T,V) of a tree T and a family V = (Vt)t∈T of vertex sets Vt ⊆ V (Γ), which are
called parts, one for every node of T such that: (T1) V (Γ) =

⋃
t∈T Vt, (T2) for

every edge e ∈ E(Γ), there exists a t ∈ T such that both ends of e lie in Vt, (T3)
Vt1 ∩ Vt3 ⊆ Vt2 whenever t2 lies on the (t1, t3)-path in T .

An adhesion set of (T,V) is a set of the form Vt ∩ Vt′ , where tt′ ∈ E(T ). We
call the torso of a part Vt the supergraph of G[Vt] obtained by adding to it all
possible edges in the adhesion sets incident to Vt. It is not hard to see that each
adhesion set leads to a separation of Γ and that every nested set N of separations
gives rise to a tree-decomposition whose adhesion sets are exactly the elements of
N , see [2]. As an application of Theorem 2.1, one can show the following Lemma.

Lemma 2.2 ([10, Corollary 4.3]). Let Γ be a locally finite graph with more than
one end such that a group G acts on Γ. Then there exists a tree-decomposition
(T,V) with the following properties: (i) (T,V) distinguishes at least two ends, (ii)
all adhesion sets of (T,V) are finite, (iii) the action of G on Γ induces an action on
Γ[V] and a transitive action on the set of separations corresponding to the adhesion
sets.

Notice that the transitive action on the set of separations in Lemma 2.2 (iii) implies
at most two orbits for Γ(V) under the action of G. Moreover, we can translate the
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action of item (iii) to an action of G on T in the natural way (and G will clearly
act transitively on E(T )): gt = t′ ⇔ gVt = Vt′ .

In this paper, we are studying groups admitting cubic Cayley graphs of connec-
tivity two. The next Lemma implies that such a graph has at least two ends.

Lemma 2.3 ([1, Lemma 2.4]). Let Γ be a connected vertex-transitive d-regular
graph. Assume Γ has one end. Then the connectivity of Γ is ≥ 3(d+ 1)/4.

2.2. Groups

Let G be a group acting on a set X. Then the setwise stabilizer of a subset Y of
X is the set of all elements g ∈ G stabilizing Y setwise, i.e StG(Y ) := {g ∈ G |
gy ∈ Y,∀y ∈ Y }. Let G be a group acting on a graph Γ. Then this action induces
an action on E(Γ). We say that G acts without inversion on Γ if g(uv) 6= vu for
all uv ∈ E(Γ) and g ∈ G. In the case that g(uv) = vu, we say that g inverts u, v.
Notice that when G acts transitively with inversion on the set E(T ) of edges of a
tree T without leaves, it must also act transitively on the set V (T ) of its vertices.

Let G1 = 〈S1 | R1〉 and G2 = 〈S2 | R2〉 be two groups. Suppose that a
subgroup H1 of G1 is isomorphic to a subgroup H2 of G2, say an isomorphic
map φ : H1 → H2. The free-product with amalgamation of G1 and G2 over H1 is
G1 ∗

H1

G2 = 〈S1 ∪ S2 | R1 ∪R2 ∪ hφ(h)−1,∀h ∈ H1〉.
If H1 and φ(H1) are isomorphic subgroups of G1, then the HNN-extension of

G1 over H1 with respect to φ is G1 ∗
H1

(t) = 〈S1, t | R1 ∪ tht−1φ(h)−1,∀h ∈ H1〉.
The crux of Bass-Serre theory is captured in the next Lemma which determines

the structure of groups acting on trees.

Lemma 2.4 ([14]). Let G act without inversion on a tree that has no vertices
of degree one and let G act transitively on the set of (undirected) edges. If G acts
transitively on the tree, then G is an HNN-extension of the stabilizer of a vertex
over the pointwise stabilizer of an edge. If there are two orbits on the vertices of
the tree, then G is the free product of the stabilizers of two adjacent vertices with
amalgamation over the pointwise stabilizer of an edge.

Finally, Zn denotes the cyclic group of order n. A finite dihedral group is defined
by the presentation 〈a, b | b2 = an = (ba)2〉 and denoted by D2n. Moreover, the
infinite dihedral group D∞ is defined by 〈a, b | b2 = (ba)2〉.

3. General structure of the tree-decomposition

For the rest of the paper, we assume that G = 〈S〉 is an infinite finitely generated
group such that Γ = Cay(G,S) is cubic with connectivity two. Let N be a nested
set of separations of order two in such a way that N gives a tree-decomposition as
in Lemma 2.2. Then we notice that every 2-separation of Γ such that A ∩ B is a
proper subset of A and B distinguishes at least two ends, see [6, Lemma 3.4]. For
an arbitrary element (A,B) ∈ N , there are three cases as in Fig. 1.
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Type I Type II Type III

Figure 1. The three types of splitting 2-separations in cubic Cayley graphs
of connectivity 2.

First, we dismiss the case of Type III separations by easily showing that we can
always choose Type II instead for the nested set of separations and the respective
tree-decomposition obtained by Lemma 2.1 and Lemma 2.2.

Lemma 3.1. Assume that Γ contains a Type III separation distinguishing
efficiently at least two ends. Then it also contains a Type II separation distin-
guishing efficiently the same ends.

In what follows, (T,V) will always be as in Lemma 2.2, either of Type I or

Type II if not specified. For a node t ∈ V (T ), we define n(t) := Γ
[⋃

t∈NT [t] Vt

]
.

Let H be an arbitrary graph with a set U ⊆ V (H) and a subgraph H ′ of H.
The set U is called connected in H ′ if for every pair of vertices u, u′ ∈ U there is
a (u, u′)-path in H ′.

Lemma 3.2. Let t be an arbitrary vertex of T . Then for every t′ ∈ NT (t),
(i) the adhesion set Vt∩Vt′ is connected in at least one of Vt, Vt′ , (ii) Vt is connected
in n(t).

The next crucial lemma implies that all adhesion sets in N are disjoint.

Lemma 3.3. Let t be a node of T . Then for every t1, t2 ∈ NT (t), we have
Vt1 ∩ Vt2 = ∅.

Corollary 3.4. Every vertex u of Γ is contained in exactly two parts t, t′ ∈
V (T ). In addition, NΓ(u) ⊆ Vt ∪ Vt′ and every part is the disjoint union of its
adhesion sets.

Moreover, let {x, y} be an adhesion set. Observe that xy−1{x, y} is again an
adhesion set containing x, so xy−1{x, y} = {x, y} with xy−1x = y. We obtain:

Lemma 3.5. For every adhesion set {x, y}, we have (xy−1)2 = 1.

Corollary 3.6. Let tt′ ∈ E(T ). Then StG(Vt ∩ Vt′) ∼= Z2.
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4. The case of a tree-decomposition of Type II
and three generators

In this extended abstract, we briefly discuss only the case when G is generated
by three involutions and the tree-decomposition of the respective Cayley graph
is of Type II. For a full discussion of all cases, we refer the reader to the full
version [13]. Let G = 〈a, b, c〉, where a, b and c are involutions. Then – up to
rearranging a, b, c – we have two cases for the separations in N as in Fig 2. We
can prove that we actually have one.

Vt

Vt′

Vt

Vt′

Case I Case II

Figure 2. Type II cases with three generators

Lemma 4.1. The adhesion sets of (T,V) satisfy Case II.

Since the torso of every part of (T,V) is a connected graph, we deduce that
the tree-decomposition has two orbits of parts: parts in O1 contain only b- and
c-edges and parts in O2 induce perfect a-matchings. Clearly, G then acts on (T,V)
without inversion.

Lemma 4.2. Every part in O1 induces an alternating (b, c)-cycle of length a
multiple of 4 or an alternating double (b, c)-ray.

By the 2-connectivity of Γ, the connected, 2-regular torso of a part Vs ∈ O2

must be a finite cycle. Depending on which of the cases of Lemma 4.2 we have,
we can label its edges with (bc)n or (bc)nb (corresponding to the virtual edges of
the torso) and a in an alternating fashion. Therefore, there is an m ≥ 2 such that
(a(bc)n)m = 1 or (a(bc)nb)m = 1. It remains to infer the structure of G in each
case.

Suppose that every part in O1 is an alternating (b, c)-cycle of length 4n and
(a(bc)n)m = 1. We can see that StG(Vt1) = Vt1

∼= D4n and StG(Vt2) = Vt2 =
〈a(bc)n, a | (a(bc)n)m, a2, (a(a(bc)n))2〉 ∼= D2m to infer by Lemma 2.4 that G ∼=
D4n ∗

Z2

D2m.

Assume that every part in O1 is an alternating double (b, c)-ray and that
(a(bc)nb)m = 1. Similarly, StG(Vt1) = Vt1 = 〈bc, b | b2, (b(bc))2〉 ∼= D∞ and
StG(Vt2) = Vt2 = 〈a(bc)nb, a | (a(bc)nb)m, a2, (a(a(bc)nb))2〉 ∼= D2m to deduce by
Lemma 2.4 that G ∼= D4n ∗

Z2

D2m.
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Theorem 4.3. If (T,V) is of Type II with three generators, then G ∼= D4n ∗
Z2

D2m or G ∼= D∞ ∗
Z2

D2m.

Corollary 4.4 ([7, Theorem 1.1]). If (T,V) is of Type II with three generators,
then either G = 〈a, b, c | a2, b2, c2, (bc)2n, (a(bc)n)m〉 and Γ is planar if and only
if n = 1, or G = 〈a, b, c | a2, b2, c2, (a(bc)nb)m〉 and Γ is planar if and only if
n = 1. �

5. Open questions

Some further open questions can naturally be raised. In light of Lemma 2.3, we
can ask the following.

Problem 1. Characterize all groups admitting 4-regular Cayley graphs of con-
nectivity at most three in terms of splitting over subgroups.

A graph is called quasi-transitive if it has a finite number of orbits of vertices
under the action of its automorphism group. Looking back at Theorem 1.1, we see
that cubic Cayley graphs of connectivity two can be expressed as a tree decom-
position whose torsos induce two cycles or the double ray and a cycle. The main
combinatorial tools from our proof follow through to show that this is in general
the case for every cubic transitive graph of connectivity two. We can go a step
futher and ask the following question:

Problem 2. Characterize all cubic quasi-transitive graphs of connectivity two
in terms of “canonical” tree decompositions with the property that the automor-
phism group of the graph acts transitively on the set of the adhesion sets.
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