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DOUBLY BIASED WALKER-BREAKER GAMES

J. FORCAN and M. MIKALAČKI

Abstract. We study doubly biased Walker-Breaker games, played on the edge set

of a complete graph on n vertices, Kn. Walker-Breaker game is a variant of Maker-

Breaker game, where Walker, playing the role of Maker, must choose her edges
according to a walk, while Breaker has no restrictions on choosing his edges. Here

we show that for b ≤ n
10 lnn

, playing a (2 : b) game on E(Kn), Walker can create

a graph containing a spanning tree. Also, we determine a constant c > 0 such that
Walker has a strategy to make a Hamilton cycle of Kn in the (2 : cn

lnn
) game.

1. Introduction

We study a variant of the well known Maker-Breaker positional games on graphs.
Let X be a finite set of elements, that we call the board of the game, let F ⊆ 2X be
the family of winning sets, and let a and b be two positive integers. In the (a : b)
Maker-Breaker game on X, two players, Maker and Breaker, alternate in claiming
a (respectively b) unclaimed elements of the board, with Breaker going first. The
game ends when all elements are claimed. Maker wins the game if by the end of
the game she has claimed all the elements of one winning set, and Breaker wins
otherwise. When a = b = 1, the games are called unbiased, and otherwise are
called biased games.

The standard approach is to look at the Maker-Breaker games played on the
edge set of the complete graph on n vertices, Kn, i.e. X = E(Kn). The winning
sets are some graph theoretic properties, such as spanning trees, perfect matchings,
Hamilton cycles, cliques, etc. In the Connectivity game the winning sets are the
edge sets of the spanning trees of Kn and in the Hamiltonicity game the winning
sets are the edge sets of all Hamilton cycles in Kn. There has been a lot of research
in this aspect in recent years, and lots of examples of Maker-Breaker games can be
found in the book of Beck[1] and in the recent monograph of Hefetz, Krivelevich,
Stojaković and Szabó [6]. Regarding unbiased games, Lehman showed in [9] that
for n ≥ 4, Maker easily wins the unbiased Connectivity game on Kn. Also, it is
shown in [7] that Maker is able to create a Hamilton cycle, within n+1 rounds. In
order to give some advantage to Breaker, the biased (1 : b) games were introduced
by Chvátal and Erdős in [2]. Other way to provide greater chances for Breaker to
win is to restrict Maker’s selections of edges in graph. In Walker-Breaker game,
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introduced by Espig, Frieze, Krivelevich and Pegden [4], Walker is not allowed to
choose any free edge in graph. Instead, she has to choose her edges according to a
walk, that is, in each move she needs to choose an edge incident with some vertex
v in which she is currently positioned, that is not already claimed by Breaker (but
could have been chosen by Walker earlier). Breaker, on the other hand, can claim
any edge not already claimed.

Not so much is known about Walker-Breaker games. It is easy to see that
Walker cannot make a spanning tree, nor any spanning structure in the unbiased
Walker-Breaker game on Kn, and thus in the biased game as well. Clemens and
Tran in [3] considered how large a cycle can Walker make in both unbiased and
biased Walker-Breaker game on Kn, and proved that Walker can create a cycle
of length n − 2 in the unbiased Walker-Breaker game, while in the biased (1 : b)
Walker-Breaker game, Walker can create a cycle of length n− O(b) for b ≤ n

ln2 n
.

They also posted the following two questions.

Question 1.1 ([3, Problem 6.4]). What is the largest bias b for which Walker
has a strategy to create a spanning tree of Kn in the (2 : b) Walker-Breaker game
on Kn?

Question 1.2 ([3, Problem 6.5]). Is there a constant c > 0 such that Walker
has a strategy to occupy a Hamilton cycle of Kn in the (2 : cn

lnn ) Walker-Breaker
game on Kn?

Our research is focused on the biased (2 : b) Walker-Breaker Connectivity and
Hamiltonicity games and here, we address both of the mentioned questions.

2. Preliminaries

Our notation is standard and follows that of [10]. Specifically, we use the following.
For given graph G by V (G) and E(G) we denote its vertex set and edge set,

respectively. The order of graph G is denoted by v(G), and the size of the graph
by e(G). Let dG(v) denote the degree of vertex v in G and dG(v,B) the degree
of vertex v in G towards vertices from B. Assume that the Walker-Breaker game,
played on the edge set of graph Kn, is in progress. At any given moment during
this game, we denote the graph spanned by Walker’s edges by W and the graph
spanned by Breaker edges by B. At any point during the game, the edges of
Kn r (W ∪B) are called free.

Let n be a positive integer and let 0 < p < 1. The Erdős-Rényi model G(n, p)
is a random subgraph G of Kn, constructed by retaining each edge of Kn in G
independently at random with probability p. We say that graph G(n, p) possesses
a graph property P asymptotically almost surely, or a.a.s., for brevity, if the prob-
ability that G(n, p) possesses P tends to 1 as n goes to infinity.

In order to answer the Question 1.2, we need some statements related to local
resilience and random graphs.
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Definition 2.1 ([3]). For n ∈ N, let P = P(n) be some graph property that
is monotone increasing, and let 0 ≤ ε, p = p(n) ≤ 1. Then P is said to be (p, ε)-
resilient if a random graph G ∼ G(n, p) a.a.s. has the following property: For
every R ⊆ G with dR(v) ≤ εdG(v) for every v ∈ V (G) it holds that GrR ∈ P.

Next theorem provides a good bound on the local resilience of a random graph
with respect to the Hamiltonicity.

Theorem 2.2 ([8]). For every positive ε > 0, there exists a constant C = C(ε)
such that for p ≥ C lnn

n , a graph G ∼ G(n, p) is a.a.s. such that the following
holds. Suppose that H is a subgraph of G for which G′ = G − H has minimum
degree at least (1/2 + ε)np, then G′ is Hamiltonian.

3. Results

First, we look at the Question 1.1. Our first result shows that Walker can make a
spanning tree in Walker-Breaker Connectivity game on Kn even if Breaker’s bias
is b = n

10 lnn .

Theorem 3.1. For every large enough n and b ≤ n
10 lnn , Walker has a strategy

to win in the biased (2 : b) Walker-Breaker Connectivity game played on Kn.

Next, we look at the (2 : b) Walker-Breaker Hamiltonicity game on Kn and answer
the Question 1.2 affirmatively.

Theorem 3.2. There exists a constant c > 0 for which for every large enough
n and b ≤ cn

lnn , Walker has a winning strategy in the (2 : b) Hamiltonicity game
played on E(Kn).

4. Concluding remarks

When Walker’s bias is 1, she cannot hope to make a spanning structure on Kn even
in the unbiased Walker-Breaker game. Our results show that increasing Walker’s
bias by just one, she is able to make a spanning structure even when playing
against Breaker whose bias is of the order n

lnn .
Since now we know that Walker can win both Connectivity and Hamiltonicity

game, one research direction for further investigation would be to find a strategy
which allows her to win in the k-vertex connectivity game, for k > 1.
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