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ADAPTIVE MAJORITY PROBLEMS FOR RESTRICTED
QUERY GRAPHS AND FOR WEIGHTED SETS
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D. LENGER, D. T. NAGY, D. PALVOLGYI, B. PATKOS, M. VIZER Axp G. WIENER

ABSTRACT. Suppose that the vertices of a graph G are colored with two colors in an
unknown way. The color that occurs on more than half of the vertices is called the
magority color (if it exists), and any vertex of this color is called a majority vertex.
We study the problem of finding a majority vertex (or show that none exists), if we
can query edges to learn whether their endpoints have the same or different colors.
Denote the least number of queries needed in the worst case by m(G). It was shown
by Saks and Werman that m(K,) =n — b(n) where b(n) is the number of 1’s in
the binary representation of n. In this paper we initiate the study of the problem
for general graphs. The obvious bounds for a connected graph G on n vertices are
n—>b(n) < m(G) < n—1. We show that for any tree T on an even number of vertices
we have m(T) = n — 1, and that for any tree T on an odd number of vertices, we
have n — 65 < m(T) < n — 2. Our proof uses results about the weighted version
of the problem for K, which may be of independent interest. We also exhibit a
sequence G of graphs with m(Gr) = n — b(n) such that the number of edges in
Gy is O(nb(n)).

1. INTRODUCTION

Given a set X of n balls and an unknown coloring of X with a fixed set of colors, we
say that a ball z € X is a magority ball if its color class contains more than |X|/2
balls. The majority problem is to find a majority ball (or show that none exists). In
the basic model of majority problems, one is allowed to ask queries of pairs (x,y)
of balls in X to which the answer tells whether the color of x and y is the same or
not, which we denote by SAME and DIFF, respectively. The answers are given by
an Adversary whose goal is to force us to use as many questions as possible. It is
an easy exercise to see that if the number of colors is two, then in a non-adaptive
search (all queries must be asked at once) the minimum number of queries to solve
the majority problem is n — 1, unless n is odd, in which case n — 2 queries suffice.
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On the other hand, Fisher and Salzberg [8] proved that if we do not have any
restriction on the number of colors, [3n/2] — 2 queries are necessary and sufficient
to solve the majority problem adaptively (queries are asked sequentially). If the
number of colors is two, then Saks and Werman [15] proved that the minimum
number of queries needed in an adaptive search is n—b(n), where b(n) is the number
of 1I’s in the binary form of n (we note that there are simpler proofs of this result,
see [1, 13, 16]). There are several other generalizations of the problem, including
more colors [2, 4, 9, 11], larger queries [3, 4, 6, 7, 10, 11, 12], non-adaptive
[1, 5, 9], weighted versions [9].

In the present paper we study the adaptive majority problem for two colors when
we restrict the set of pairs that can be queried to the edges of some graph G on n
vertices. The original majority problem, where we can ask any pair, corresponds to
G = K,,. To distinguish between the version when we are restricted to the edges of
a graph, and the original, unrestricted version, we call the colored objects vertices
and balls, respectively. Notice that it is possible to solve the majority problem
(with any number of queries) if and only if G is connected when n is even, and if
and only if G has at most two components when n is odd. For any such graph,
denote the minimum number of queries needed to solve the majority problem in
the worst case by m(G). Obviously we have n — b(n) = m(K,) < m(G) <n-—1
(moreover, m(G) < n — 2 when n is odd). Our main results are the following.

Theorem 1.1. For every tree T on an even number n of vertices m(T) =n—1
and for every tree T on an odd number n of vertices m(T) > n — 65.

The constant 65 is probably far from optimal, it is possible that m(T") > n — 3
holds for every tree. We have a better lower bound, n — 6 for paths.

We also study the least number of edges a graph must have if we can solve the
majority problem as fast as in the unrestricted case, i.e., when m(G) = n — b(n).

Theorem 1.2. For every n, there is a graph G with n vertices and O(nb(n))
edges with m(G) = n — b(n).

It would be interesting to determine whether this bound can be improved to
O(n), or show a superlinear lower bound.

The proof of Theorem 1.1 uses a weighted version of the original (i.e., G = K,
case of the) majority problem, which is defined in the next section. We think these
results are interesting on their own.

In the following, we always suppose that only two colors are used, which we call
red and blue. When both colors contain the same number of balls, then we call
the coloring balanced.

2. WEIGHTED MAJORITY PROBLEMS

We define a variant of the majority problem, where the balls are given different
weights. Given k balls with non-negative integer weights wq, ..., wg, a ball i is a
(weighted) majority ball if the weight of its color class is more than Zle w; /2.
The (weighted) majority problem is to find a majority ball (or show that none
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exists). Note that during the running of an adaptive algorithm for the majority
problem, at any point the information obtained so-far can be represented by a
weighted vector w.!

A set of k balls with given weights wy,...,wy can be represented by a vector
w = (wy,...,wg). We denote the number of queries needed to solve the weighted
majority problem in the worst case by m(w). With this notation, the result of
Saks and Werman for the non-weighted becomes m(1,...,1) = k—b(k). Note that
m(w) <k —1 and if Zle w; is odd, then m(w) < k —2 (if k£ > 2).

The weighted problem was first studied in [9], where the following proposition
(which also implies the result of Saks and Werman) was proved about the non-
weighted variant, generalizing a result of [13] (which built on [14]). Let u(k)
denote the largest [ such that 2! divides k (and define x(0) = oo). For w denote
by p the number of balanced colorings, and by p; the number of (non-balanced)
colorings such that w; is in the majority class.?

Proposition 2.1.

(i) m(w) >k — pu(p), and

(ii) m(w) >k —1— p(p;) for every i < k.

Our main results about the weighted majority problem are exact bounds for
some special w.

Lemma 2.2. Let w = (wy,...,wg) and k > 2" 4+ 1.

(i) Ifwy =--=wam =1 and Zle w; = 2" then m(w) = k — 1.

(i) Ifwy = =wom =1, Y8 w; = 2" 41, then m(w) = k — 2.

Note that wy # 2™ implies k > 2" + 1, as w; # 0.

We can also generalize this to the following.

Lemma 2.3. Let w = (wy,...,wg) and k > 2" + 1.

(1) If wy = -+ = wan and there are an odd number of partitions RU B =
{27+ 1,...,k} such that ) ;. pw; — ), pwi = wi2", then m(w) =k — 1.
(il) If wy = -+ = wan and Zle w; < w2 4+ 2w; for any 2" < j < k, with

the inequality being strict for j =k, then m(w) > k — 2.

These imply, for example, that m(3,3,7,8,9) =4 and m(3,3,5,5,5) > 3.

Call a vector w = (wy,...,wy) hard if m(w) = k — 1 and Y, w; is even,
or ", w; is odd and m(w) = k — 2. Thus Lemma 2.2 states that the vectors
satisfying its conditions are hard.

Observation 2.4. If w = (wy,...,wy) is hard with w; = we and w' =
(2wy,ws, ..., wg), then w’ is also hard.

Combining Observation 2.4 with Lemma 2.2, we obtain the following statement.

IThis is explained in more details in Section 3.

2Beware that in [9] a slightly different notation was used, where p denoted the number of balanced
2-partitions, which is half of the number of balanced colorings, and part (ii) of Proposition 2.1
was not explicitly stated.
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Lemma 2.5. If wy,...,w; are each powers of two, k > 2" 41, and
(i) 5:1 w; = 2" and Zle w; = 2" then w is hard, i.e., m(w) = k — 1.
(i) 7w, =27, 328w = 27 41, then w is hard, i.e., m(w) = k — 2.

For larger weights, we state the following weaker statement.

Corollary 2.6. If wy,...,w; are each powers of two and

S wi =2 win =1, 5w = 27T 43 and k > 2"+2, then m(w) > k—3.
Combining Lemma 2.3 and Corollary 2.6 we obtain the following.
Proposition 2.7. If1 <wi,...,w; <2 and

Zgzl w; = 2", Zle w; = 2" 4+ 3 and k > 2" + 2, then m(w) > k — 3.

Proof. If there is some ¢ > j such that w; = 1, we are done using Corollary 2.6.
Otherwise, for all j < ¢ < k we have w; > 2, and we can apply Lemma 2.3. (|

3. GRAPHS

When we query the edges of a graph G, we call a maximal subset of vertices
connected by already asked queries a g-component. The weight w of a g-component
X is the number of its vertices. For a ball v € X, let w(v) := w(X). If a
g-component X has weight zero, we say that X is balanced. A graph G on n
vertices is hard if m(G) =n — 1 for even n and m(G) = n — 2 for odd n.

Proposition 3.1. Every tree T on an even number n of vertices is hard, i.e.,
m(T)=n—1.

Surprisingly, it is much harder to give a lower bound for trees on an odd number
of vertices. For paths, for example, we have m(P,) = n — b(n) for all odd n < 13,
while m(Py5) = 12 =n—b(n) +1 = n—3. (This we have verified with a computer
program.)

We start with a lemma that gives another proof for Proposition 3.1. First, we
introduce a notation. In a graph G, for a subset of its vertices X C V we denote
by §(X) the parity of the number of edges between X and V \ X. If G is a tree
and X is a connected subset of vertices, then §(X) equals the parity of the number
of components of V' \ X.

Lemma 3.2. We can answer to queries in any graph G such that for the weight
w(X) of any g-component X C V we have

(i) w(X) =1 if|X]| is odd, and

(i) w(X) =20(X) if | X| is even.

Proof of Lemma 3.2. Initially the conditions are satisfied. Suppose that the
query is between two g-components, X and Y. If | X|+ |Y] is odd, then exactly
one of w(X) and w(Y') equals 1, while the other equals 0 or 2, so we can achieve
w(X UY) = 1 to satisfy condition (i). If |X| and |Y| are both odd, then we
can choose the weight of X UY to be 0 or 2; one of those is equal to 26(X). If
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|X| and |Y| are both even, then since (X UY) = §(X) 4+ 6(Y) — 2|E(X,Y)| =
§(X) + 6(Y) mod 2, we have w(X UY) = w(X) + w(Y) mod 4. Observe that
w(X)+w(Y) is 0, 2 or 4. Thus we can answer so that w(X UY’) becomes 0, 2 or
0, respectively, to satisfy condition (ii). O

For the lower bound of n — 65 for trees, we need another ingredient. Before the
main proof, we prove a simpler result that contains this ingredient of the proof,
and is of independent interest.

Theorem 3.3. Let n =2 41, where I < 2%, If G has a set U of vertices such
that |U| < 2=2 and the components of G\ U are single vertices (i.e., every edge

is incident to a vertex in U), then G is hard, i.e., m(G) =n —1 if n is even and
m(G) =n—2 if n is odd.

Proof. Denoting by w(X) the weight of a g-component X, we initially have
>y w(X) = n. Adversary will maintain in the first part of the algorithm that
w(X) # 0 for every g-component X.

Let us now describe a strategy of the Adversary for the first part of the algo-
rithm. Whenever we compare some v € G\ U with a v € U such that w(u) > 2,
the answer is such that the weight of the new g-component is w({u,v}) = w(u)—1,
thus > w(X) decreases by 2. In every other case the answer is such that the
weights are added up, i.e., > w(X) remains the same.

Introduce the potential function ¥ =Y w(X)+|{X | XNU # 0, w(X) = 1}|.
The Adversary’s strategy is such that every time we compare some v € G\ U with
a u € U, the function ¥ decreases by at least 1. Since initially ¥ = n + |U|, after
|U|+1 queries involving some vertex of V \U, we would have 28 > ¥ > Y~ w(X).
But Adversary stops executing this algorithm the moment we have Yy w(X) = 2¥
or Yy w(X) = 2¥ + 1; this surely happens, as >y w(X) can only decrease by 2.

Let us consider the vertices from G ~\ U that were merged into some g-com-
ponents (i.e. those that appeared in queries). Let @ denote the number of those
where the total weight did not decrease when they first appeared in a query,
and y denote the number of those where the total weight did not decrease when
they first appeared in a query. Then we have x < y + |U|. Indeed, consider a
g-component, containing a vertex u € U, and observe that whenever the weight of
this component increased by merging it with a vertex from G ~\ U, the next time
its weight decreased.

This implies that at the point where Adversary stops executing the algorithm,
the number of vertices in G \ U that have not appeared in any query is at least
n—|U| = (|U| +1) > 2¥~1. We are done by applying Lemma 2.2 to the current
g-components as weighted balls. (So even if we could compare any two vertices
from now, we still could not solve the majority problem with less queries.) O

With a similar method, we can obtain the following lower bound for odd paths.

Theorem 3.4. m(P,) > n — 6.
Moreover, m(P,) > n —5 unless n+1 or n+ 3 is a power of two.
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Proof. We have already seen that this holds if n is even, so it is enough to prove
the theorem for n odd. First we prove the weaker claim m(P,) > n — 10. The
statement holds for n < 1000 as m(P,) > n—b(n). Let U include every 9*" vertex
of P,, starting with the first, and also the last vertex of P, so [§] < |U| < [§]+1,
and P, \ U consists of paths on 8 vertices (and possibly one shorter path at the
end). We answer each query such that for any g-component X if X N U = 0,
then w(X) < 1, while if X N U # 0, then 1 < w(X) < 2. In each step the
total weight decreases by 0 or 2, so after a while it becomes 2% 41 for k = [logn].
When this happens, we apply Lemma 2.2 to the current ¢g-components as weighted
balls. Indeed, Y.y w(X) < 2[U| = 2[5] +2 < § < 281 if n > 1000, so
Y ox:xnu—pl> 2k—1 By Lemma 2.2 the number of queries needed to finish is at
least the number of components minus 2, depending on the parity. Therefore, we
need to connect all of U into at most two components. That means that there can
be at most one path of length 9 (between two vertices from U) whose edges we
have not queried. This proves m(P,) > n — 10.

But we can do even better, because out of the 9 edges of the path at least 4
must be queried if the path contains no non-balanced components. This proves
m(P,) > n — 6 if n is large enough, but now we have to be more careful with
the calculations. Because of this, we also change how we select U; instead of
starting with the first vertex, we start with the second vertex of the path, then
take every 9*" vertex, and finally the last but one vertex. We can afford to skip
the endvertices, as a single vertex anyhow cannot form a balanced component, we
can only compare it to its adjacent vertex from U. This gives [U| = |24 |, and
%14 < g if n > 112, while for n < 127 the lower bound n — b(n) > n — 6 holds.

The proof of the moreover part is similar, except that after we start with the
second vertex, we take every 8" vertex, and finally the last but one vertex. This
way only 4 edges can remain unqueried between two different components. This
gives [U| = [2£12] < 2Uog2m)=2 ynless n + 1 or n 4 3 is a power of two. O

The lower bound for general trees, Theorem 3.6, is based on a similar idea as
that of Theorem 3.3, but also combines ideas from Theorem 3.4 and uses Propo-
sition 2.7. We also need the following version of the folklore generalization of the
concept of centroid for trees, known as centroid decomposition.

Proposition 3.5. In every tree on n vertices there is a subset of at most 2n/p
vertices U such that every component of G\ U has at most p edges (including the
edges from the components to U ).

Theorem 3.6. If G is a tree on n vertices, then m(G) > n — 65.

Proof. Let n = 2F + 1, where | < 2% is odd. Apply Proposition 3.5 with p = 32
to obtain a set U of vertices such that |U| < 2¥=3 — 1 and each component T has
at most p edges. (We write p instead of 32 throughout the proof.)

We proceed as in the proof of Theorem 3.3. We denote by w(X) the weight
of a g-component X, and for a vertex u of G, w(u) denotes the weight of the
g-component containing u. We initially have )"y w(X) = n. The Adversary will
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maintain in the first part of the algorithm that w(X) # 0 for every g-component
X that intersects U.

We split each component T to a connecting part T' and some hanging parts
T1,T5, ... where any of these can be empty, as follows. If v € T separates some
vertices of U from each other, then it goes to T”. Each connected component of
T \. T’ forms a different T;. Notice that each hanging part T; has a unique vertex
r(T;) that separates T; ~\ {r(T3)} from T \ T;; we call r(T;) the root of T;.

We answer queries inside T; according to Lemma 3.2 (applied only to T;), while
if the query X NT" # 0, we answer such that w(X) < 2 (which is similar to
Theorem 3.4). This way the weight of any X C G ~\ U will be at most 2. The
crucial property is that the balanced g-components of T' will always separate either
two U vertices, or some positive weight part of a T; from a U vertex. This way
they are “in the way” to compare these parts with the rest of the graph, so they
cannot be simply ignored. The strategy of the Adversary will be to make sure
that the game cannot end while there are many unbalanced g-components. After
there are only few unbalanced g-components the game might end, but in this case
the graph could be made into a single g-component by adding O(p) further edges
to it. This shows that at most these many queries can be saved.

Also, in case we merge all of some T; into one g-component, Adversary would
like to avoid w(T;) = 0. This cannot happen if T; has an odd number of vertices;
if T; has an even number of vertices, Adversary adds an (imaginary) extra degree
one vertex 7'(T;) to T; that is adjacent only to r(T3;), to obtain T}, and applies
Lemma 3.2 to T} instead of T;. Since r/(7;) is never compared with anything,
merging all of T; into a g-component cannot give w(T;) = 0, because T7 = T} \ T;
has only one component, {r'(T;)}. Therefore, in case the whole tree T; is merged,
we get w(T;) = 2.

Whenever we compare some Y C G ~\ U with an X intersecting U such that
w(X) > 3, Adversary answers such that the weight of the new g-component is
w(X) — w(Y), thus >y w(X) decreases by 2w(Y) < 4. In every other case
Adversary answers so that the weights are added up, i.e., )y w(X) remains the
same. This way the weight of a g-component can never exceed 4, unless we merge
two g-components that both intersect U. Because of this, we can conclude that
Dxixnuzo WX) 4U[<nj/d <280

Adversary stops executing this algorithm the moment we have ), w(X) =
2% + 1 or 2% 4 3; this surely happens, as Yo xw(X) is odd and can decrease
by at most 4. As we have seen in the earlier proofs, if >y w(X) = 2¥ + 1,
then we will have two non-balanced g-components when the algorithm is done.
If Y yw(X) = 2% + 3, then we can apply Proposition 2.7, whose conditions are
shaped to work here, to conclude that we will have at most three non-balanced
g-components when the algorithm is done.

Moreover, these few remaining non-balanced g-components need to cover U, as
the weights of sets intersecting U stays positive throughout the algorithm. If at
the end we have at most ¢ components, then adding ¢ — 1 original tree component
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T’s, we can make the g-graph connected. As every tree has at most p vertices,
and in our case ¢ < 3, adding 2p edges can make the g-graph connected.
To summarize, instead of asking all n — 1 edges, we might save 2p = 64. O

Remark. We could get a better constant by considering the number of yet un-
queried edges we need to add to connect the remaining non-balanced g-components.
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