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TWO VALUES OF THE CHROMATIC NUMBER

OF A SPARSE RANDOM GRAPH

S. KARGALTSEV, D. SHABANOV and T. SHAIKHEEVA

Abstract. The famous results of  Luczak (1991) and Alon – Krivelevich (1997)

state that the chromatic number χ(G(n, p)) of the binomial random graph G(n, p)
is concentrated in two consecutive values with probability tending to 1 provided

p = p(n) ≤ n−1/2−ε. Unfortunately, their proofs do not give the explicit values of
χ(G(n, p)) as functions of n and p. Achlioptas and Naor (2005) found these values in

the sparse case when np is fixed. Coja-Oghlan, Panagiotou and Steger (2008) showed

that the chromatic number of G(n, p) is concentrated in three explicit consecutive

values provided p = p(n) ≤ n−3/4−δ, they also established a 2-point concentration
for the “half” of the values of the parameter p under these conditions. In the

current paper we improve the discussed result and show that the concentration of
the chromatic number in two explicit consecutive values holds “almost everywhere”

provided p = p(n) ≤ n−3/4−δ and np → +∞. Namely, if rp = min{r : (n − 1)p <

2r ln r} then we prove that for

(n− 1)p ∈
(

2(rp − 1) ln(rp − 1), 2rp ln rp − ln rp − 2− r−1/6
p

)
,

it holds that
Pr (χ(G(n, p)) ∈ {rp, rp + 1})→ 1 as n→ +∞.

1. Introduction

The paper deals with the well–known problem concerning the chromatic number
of a random graph. Let G(n, p) denote the binomial model of a random graph,
in which every edge of the complete graph on n vertices is included into G(n, p)
independently with probability p.

The problem of estimating the chromatic number of G(n, p) has a huge back-
ground, it was intensively studied for the decades. The first sharp asymptotics for
χ(G(n, p)) was established by Bollobás [4] in the dense case. For a fixed p ∈ (0, 1),
he showed that

(1) χ(G(n, p)) ·

(
n

2 log(1−p)−1 n

)−1
Pr−→ 1 as n→ +∞.
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The argument of the above result also works for a slowly enough decreasing func-
tion p = p(n). The remaining regimes were investigated by  Luczak [14], who
showed that if p = p(n) = o(1) but np→ +∞ with growth of n then

χ(G(n, p)) ·
(

np

2 ln(np)

)−1
Pr−→ 1 as n→ +∞.

Recent refinements of (1) in the dense case have been obtained by Heckel [9].
Advances concerning the chromatic number of dense random subgraphs of Knezer
graphs and hypergraphs can be found, e.g., in [10], [13].

Another remarkable result of  Luczak [15] states that for p ≤ n−5/6, there is
a concentration of χ(G(n, p)) in two consecutive values with probability tending
to 1, i.e., there exists a function h = h(n) such that

(2) Pr (χ(G(n, p)) ∈ {h, h+ 1})→ 1 as n→∞.

Alon and Krivelevich [3] showed that the same situation holds up to p = p(n) ≤
n−1/2−ε where ε > 0 is an arbitrary positive constant. However, the proofs of
these results do no give any reasonable information about the exact value of the
function h in (2). The first advancement in this direction was made by Achlioptas
and Naor [1] for the sparse case when np = c > 0 is a fixed number. Their theorem
can be formulated as follows: suppose that c > 0 is fixed and let rc denote the
smallest natural number r such that c < 2r ln r, then

Pr (χ(G(n, c/n)) ∈ {rc, rc + 1})→ 1 as n→ +∞.

This result completely solves the question concerning two-point concentration,
however since the r-colorability property has a sharp threshold (see [2]), r ≥ 3,
we should expect one-point concentration instead. It is easy to verify that for
c > 2r ln r − ln r, the random graph G(n, c/n) is not r-colorable with probability
tending to 1. This observation together with the result of Achlioptas and Naor
yields that for c ∈ (2r ln r−ln r, 2r ln r), the chromatic number of G(n, p) is exactly
equal to r+1 with probability tending to 1, but for c ∈ (2(r−1) ln(r−1), 2r ln r−
ln r), it is equal to r or r + 1. The best current estimates of the r-colorability
thresholds were obtained by Coja-Oghlan and Vilenchik ([6], lower bound) and by
Coja-Oghlan ([7], upper bound). Their results state that

• if c < 2 ln r−ln r−2 ln 2−or(1) then Pr (χ(G(n, c/n)) ≤ r)→ 1 as n→ +∞;
• if c > 2 ln r − ln r − 1 + or(1) then Pr (χ(G(n, c/n)) > r)→ 1 as n→ +∞.

So, when the expected number of edges is linear, p = c/n, only in the short
intervals of the type c ∈ (2 ln r − ln r − 2 ln 2 − or(1), 2 ln r − ln r − 1 + or(1)) we
do not know the exact limit value of the chromatic number of G(n, c/n).

The first attempt to find the values of χ(G(n, p)) for growing np was made
in the paper [8] by Coja-Oghlan, Panagiotou and Steger. For not too large p =
p(n), they were able to establish the concentration of the chromatic number in
three consecutive explicit values. The exact formulation is the following: suppose
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0 < δ ≤ 1/4 is fixed and p ≤ n−3/4−δ, denote rp = rp(n) = min{r : p(n − 1) <
2r ln r}, then

Pr (χ(G(n, p)) ∈ {rp, rp + 1, rp + 2})→ 1 as n→ +∞.
Moreover, if p(n− 1) > 2rp ln rp − ln rp + ε for a fixed ε > 0 then

Pr (χ(G(n, p)) ∈ {rp + 1, rp + 2})→ 1 as n→ +∞.
Thus, in the interval p(n − 1) ∈ (2(rp − 1) ln(rp − 1), 2rp ln rp) the function h(n)
from (2) is exactly known roughly for half of the values.

2. New result

Our main result refines the theorem of Coja-Oghlan, Panagiotou and Steger and
provides the exact values of two-point concentration for the almost all remaining
situations.

Theorem 2.1. Suppose that 0 < δ ≤ 1/4 is fixed and p ≤ n−3/4−δ. Let us
denote rp = rp(n) = min{r : p(n− 1) < 2r ln r}. If

p(n− 1) < 2rp ln rp − ln rp − 2− r−1/6p

then
Pr (χ(G(n, p)) ∈ {rp, rp + 1})→ 1 as n→ +∞.

Together with the previous results Theorem 2.1 states that we do not have
concentration in two explicit consecutive numbers only in the situation when
p(n− 1) lies in the interval of a bounded length, namely

p(n− 1) ∈ [2rp ln rp − ln rp − 2− r−1/6p , 2rp ln rp − ln rp + ε].

This is quite similar to the case when pn is fixed, but everytime we need one more
color.

3. Ideas of the proof

The proof of Theorem 2.1 follows the general scheme from [8] and starting from
some moment we can just repeat the arguments.

3.1. Second moment method

The key ingredient of the argument from [8] is the following technical theorem from
the paper of Achlioptas and Naor [1]. Let Dr denote the set of r×r matrices M =
(mij , i, j = 1, . . . , r) with nonnegative elements satisfying the following conditions:

r∑
i=1

mij =
1

r
, for any j = 1, . . . , r;

r∑
j=1

mij =
1

r
, for any i = 1, . . . , r.

For any M ∈ Dr, denote

H(M) = −
r∑

i,j=1

mij lnmij ; E(M) = ln

(
1− 2

r
+

r∑
i,j=1

m2
ij

)
.
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Denote for d > 0, Gd(M) = H(M) + d · E(M). The result of Achlioptas and Naor
states that for d < 2(r− 1) ln(r− 1), the value Gd(M) reaches its maximum value
at the matrix Jr which has all entries equal to 1/r2. We improve this assertion as
follows.

Lemma 3.1. There exists an absolute constant r0 such that for any r > r0,
d < 2r ln r − ln r − 2− r−1/6 and any M ∈ Dr, we have Gd(M) ≤ Gd(Jr).

The proof of Lemma 3.1 follows the analysis from the papers [11, 12, 16, 17]
concerning colorings of random k-uniform hypergraphs. E.g., in [11] the second
moment method was used to obtain very tight estimates for the panchromatic
3-colorability threshold in a random k-uniform hypergraph (recent advances on
panchromatic colorings of hypergraphs can be found in [5]). However, the proofs
in [11, 12, 16, 17] hold only for k ≥ 4, so we were not able to apply them directly
to the case of graphs and had to derive some new ideas.

As a corollary of Lemma 3.1 we obtain the following result for the case of fixed
np.

Corollary 3.2. Suppose that np = c > 0 is fixed. There exists an absolute
constant r0 such that for any r > r0, c < 2r ln r − ln r − 2− r−1/6, we have

Pr (χ(G(n, c/n)) ≤ r)→ 1 as n→ +∞.

Note that this bound for r-colorability threshold is slightly weaker than the
result obtained in [6], but it also has a constant gap with the known upper bound.

Lemma 3.1 helps to estimate the second moment of the number of proper bal-
anced r-colorings (i.e. colorings with almost equal sizes of color classes) of a
random graph in the uniform model G(n,m) in which m edges are chosen ran-
domly without replacement and m = bp

(
n
2

)
c. Together with Proposition 3.3 and

Lemma 3.4 from [8] it implies that under the condition of Theorem 2.1 it holds
that

(3) Pr (χ(G(n, p)) ≤ rp) ≥ e−6(np)
2

n−r
2
p .

3.2. Completion of the proof

From this moment one can just repeat the argument from [8], so we will not go
into any details and will briefly describe the approach.

The inequality (3) shows that rp colors are not enough to color G(n, p) properly.
However, Lemma 4.2 from [8] states that with probability tending to 1 we can color
properly almost the whole graph except the vertex subset U0 of the size at most
n3/2p lnn. For small p ≤ n−1+1/20, we can show that there exists a larger subset
U ⊃ U0 such that

• the subgraph induced on U is 3-colorable;
• its neighborhood N(U) in G(n, p) is an independent set.
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Thus, we color U with colors {1, 2, 3}, G(n, p)r(U ∪N(U)) with colors {1, . . . , rp}
and N(U) with color rp + 1.

For large p ∈ [n−1+1/20, n−3/4−δ], one can use the approach of Alon and Kriv-
elevich [3] to find a subset U ⊃ U0 such that G(n, p) r U is still rp-colorable and
every vertex outside U has small number of neighbors in U . After that we can
modify a proper r-coloring of G(n, p) r U with additional color rp + 1 to get a
small enough number of restrictions for coloring of U which can be colored with
the obtained list coloring by the help of the Local Lemma.

3.3. Ideas of the proof of Lemma 3.1

In this section we comment on the proof of Lemma 1. To show that Gd(M) ≤
Gd(Jr) we consider this difference “by rows”:

Gd(Jr)− Gd(M) =

r∑
i,j=1

mij lnmij − d ln

(
1− 2

r
+

r∑
i,j=1

m2
ij

)
− 2 ln r + d ln(1− 1/r)2 =

=

r∑
i,j=1

mij ln(r2mij)− d ln

(
1 +

∑r
i,j=1m

2
ij − 1/r2

(1− 1/r)2

)
.

Now denote

gi(M) =

r∑
j=1

mij ln(r2mij)− d
(∑r

j=1m
2
ij − 1/r4

(1− 1/r)2

)
.

A row mi = (mij , j = 1, . . . , r) is said to be

• good if every mij ≤ 1
r −

2
r ln r ;

• normal if there exists j such that mij ∈ [ 1r −
2

r ln r ; 1
r − r

−7/4];

• bad if there exists j such that mij ∈ [ 1r − r
−7/4; 1/r].

We prove that for any good row mi,

gi(M) ≥ r2

4

∑
j:mij<1/r2

(
mij −

1

r2

)2

+
r

2

∑
j:mij>1/r2

(
mij −

1

r2

)2

;

and for any normal row

gi(M) ≥ 1

8
r−7/4 ln r.

Finally, we consider the bad rows simultaneously. Let I ⊂ {1, . . . , r} denote the
set of indexes corresponding to the bad rows. Then we show that

ZI =
∑
i∈I

r∑
j=1

mij ln(r2mij)− d ln

(
1 +

∑
i∈I
∑r
j=1m

2
ij − 1/r2

(1− 1/r)2

)

≥ |I| ln r
2r2

(
|I|
r
− 1

)
+
|I|

r2+1/6
−O

(
ln r

r3/2

)
.
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Note that
Gd(Jr)− Gd(M) ≥

∑
i/∈I

gi(M) + ZI .

In the final part of the proof we consider different cases for the number of bad
rows |I| and show that the above estimate is always positive.
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