TWO VALUES OF THE CHROMATIC NUMBER OF A SPARSE RANDOM GRAPH

S. KARGALTSEV, D. SHABANOV AND T. SHAIKHEEVA

ABSTRACT. The famous results of Luczak (1991) and Alon – Krivelevich (1997) state that the chromatic number $\chi(G(n,p))$ of the binomial random graph G(n,p) is concentrated in two consecutive values with probability tending to 1 provided $p = p(n) \leq n^{-1/2-\varepsilon}$. Unfortunately, their proofs do not give the explicit values of $\chi(G(n,p))$ as functions of n and p. Achlioptas and Naor (2005) found these values in the sparse case when np is fixed. Coja-Oghlan, Panagiotou and Steger (2008) showed that the chromatic number of G(n,p) is concentrated in three explicit consecutive values provided $p = p(n) \leq n^{-3/4-\delta}$, they also established a 2-point concentration for the "half" of the values of the parameter p under these conditions. In the current paper we improve the discussed result and show that the concentration of the chromatic number in two explicit consecutive values holds "almost everywhere" provided $p = p(n) \leq n^{-3/4-\delta}$ and $np \to +\infty$. Namely, if $r_p = \min\{r : (n-1)p < 2r \ln r\}$ then we prove that for

$$(n-1)p \in \left(2(r_p-1)\ln(r_p-1), 2r_p\ln r_p - \ln r_p - 2 - r_p^{-1/6}\right),$$

it holds that

 $\Pr\left(\chi(G(n,p)) \in \{r_p,r_p+1\}\right) \to 1 \text{ as } n \to +\infty.$

1. INTRODUCTION

The paper deals with the well-known problem concerning the chromatic number of a random graph. Let G(n, p) denote the binomial model of a random graph, in which every edge of the complete graph on n vertices is included into G(n, p)independently with probability p.

The problem of estimating the chromatic number of G(n, p) has a huge background, it was intensively studied for the decades. The first sharp asymptotics for $\chi(G(n, p))$ was established by Bollobás [4] in the dense case. For a fixed $p \in (0, 1)$, he showed that

(1)
$$\chi(G(n,p)) \cdot \left(\frac{n}{2\log_{(1-p)^{-1}}n}\right)^{-1} \xrightarrow{\Pr} 1 \quad \text{as } n \to +\infty.$$

Received June 6, 2019.

Key words and phrases. random graphs, colorings, second moment method.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C80, 05C15.

This work of the second author is supported by the Russian Science Foundation under grant no. 19-11-00290.

The argument of the above result also works for a slowly enough decreasing function p = p(n). The remaining regimes were investigated by Luczak [14], who showed that if p = p(n) = o(1) but $np \to +\infty$ with growth of n then

$$\chi(G(n,p)) \cdot \left(\frac{np}{2\ln(np)}\right)^{-1} \xrightarrow{\Pr} 1 \qquad \text{as } n \to +\infty$$

Recent refinements of (1) in the dense case have been obtained by Heckel [9]. Advances concerning the chromatic number of dense random subgraphs of Knezer graphs and hypergraphs can be found, e.g., in [10], [13].

Another remarkable result of Luczak [15] states that for $p \leq n^{-5/6}$, there is a concentration of $\chi(G(n, p))$ in two consecutive values with probability tending to 1, i.e., there exists a function h = h(n) such that

(2)
$$\operatorname{Pr}(\chi(G(n,p)) \in \{h, h+1\}) \to 1 \quad \text{as } n \to \infty$$

Alon and Krivelevich [3] showed that the same situation holds up to $p = p(n) \leq n^{-1/2-\varepsilon}$ where $\varepsilon > 0$ is an arbitrary positive constant. However, the proofs of these results do no give any reasonable information about the exact value of the function h in (2). The first advancement in this direction was made by Achlioptas and Naor [1] for the sparse case when np = c > 0 is a fixed number. Their theorem can be formulated as follows: suppose that c > 0 is fixed and let r_c denote the smallest natural number r such that $c < 2r \ln r$, then

$$\Pr\left(\chi(G(n, c/n)) \in \{r_c, r_c + 1\}\right) \to 1 \qquad \text{as } n \to +\infty.$$

This result completely solves the question concerning two-point concentration, however since the *r*-colorability property has a sharp threshold (see [2]), $r \ge 3$, we should expect one-point concentration instead. It is easy to verify that for $c > 2r \ln r - \ln r$, the random graph G(n, c/n) is not *r*-colorable with probability tending to 1. This observation together with the result of Achlioptas and Naor yields that for $c \in (2r \ln r - \ln r, 2r \ln r)$, the chromatic number of G(n, p) is exactly equal to r + 1 with probability tending to 1, but for $c \in (2(r-1)\ln(r-1), 2r \ln r - \ln r)$, it is equal to r or r + 1. The best current estimates of the *r*-colorability thresholds were obtained by Coja-Oghlan and Vilenchik ([6], lower bound) and by Coja-Oghlan ([7], upper bound). Their results state that

- if $c < 2 \ln r \ln r 2 \ln 2 o_r(1)$ then $\Pr(\chi(G(n, c/n)) \le r) \to 1$ as $n \to +\infty$;
- if $c > 2\ln r \ln r 1 + o_r(1)$ then $\Pr(\chi(G(n, c/n)) > r) \to 1$ as $n \to +\infty$.

So, when the expected number of edges is linear, p = c/n, only in the short intervals of the type $c \in (2 \ln r - \ln r - 2 \ln 2 - o_r(1), 2 \ln r - \ln r - 1 + o_r(1))$ we do not know the exact limit value of the chromatic number of G(n, c/n).

The first attempt to find the values of $\chi(G(n, p))$ for growing np was made in the paper [8] by Coja-Oghlan, Panagiotou and Steger. For not too large p = p(n), they were able to establish the concentration of the chromatic number in three consecutive explicit values. The exact formulation is the following: suppose

850

 $0 < \delta \leq 1/4$ is fixed and $p \leq n^{-3/4-\delta}$, denote $r_p = r_p(n) = \min\{r : p(n-1) < 2r \ln r\}$, then

$$\Pr\left(\chi(G(n,p)) \in \{r_p, r_p+1, r_p+2\}\right) \to 1 \text{ as } n \to +\infty.$$

Moreover, if $p(n-1) > 2r_p \ln r_p - \ln r_p + \varepsilon$ for a fixed $\varepsilon > 0$ then

$$\Pr\left(\chi(G(n,p)) \in \{r_p + 1, r_p + 2\}\right) \to 1 \text{ as } n \to +\infty.$$

Thus, in the interval $p(n-1) \in (2(r_p-1)\ln(r_p-1), 2r_p\ln r_p)$ the function h(n) from (2) is exactly known roughly for half of the values.

2. New result

Our main result refines the theorem of Coja-Oghlan, Panagiotou and Steger and provides the exact values of two-point concentration for the almost all remaining situations.

Theorem 2.1. Suppose that $0 < \delta \le 1/4$ is fixed and $p \le n^{-3/4-\delta}$. Let us denote $r_p = r_p(n) = \min\{r : p(n-1) < 2r \ln r\}$. If

$$p(n-1) < 2r_p \ln r_p - \ln r_p - 2 - r_p^{-1/6}$$

then

$$\Pr\left(\chi(G(n,p)) \in \{r_p, r_p+1\}\right) \to 1 \text{ as } n \to +\infty$$

Together with the previous results Theorem 2.1 states that we do not have concentration in two explicit consecutive numbers only in the situation when p(n-1) lies in the interval of a bounded length, namely

$$p(n-1) \in [2r_p \ln r_p - \ln r_p - 2 - r_p^{-1/6}, 2r_p \ln r_p - \ln r_p + \varepsilon].$$

This is quite similar to the case when pn is fixed, but everytime we need one more color.

3. Ideas of the proof

The proof of Theorem 2.1 follows the general scheme from [8] and starting from some moment we can just repeat the arguments.

3.1. Second moment method

The key ingredient of the argument from [8] is the following technical theorem from the paper of Achlioptas and Naor [1]. Let \mathcal{D}_r denote the set of $r \times r$ matrices $M = (m_{ij}, i, j = 1, \ldots, r)$ with nonnegative elements satisfying the following conditions:

$$\sum_{i=1}^{r} m_{ij} = \frac{1}{r}, \text{ for any } j = 1, \dots, r; \sum_{j=1}^{r} m_{ij} = \frac{1}{r}, \text{ for any } i = 1, \dots, r.$$

For any $M \in \mathcal{D}_r$, denote

$$\mathcal{H}(M) = -\sum_{i,j=1}^{r} m_{ij} \ln m_{ij}; \ \mathcal{E}(M) = \ln\left(1 - \frac{2}{r} + \sum_{i,j=1}^{r} m_{ij}^2\right).$$

Denote for d > 0, $\mathcal{G}_d(M) = \mathcal{H}(M) + d \cdot \mathcal{E}(M)$. The result of Achlioptas and Naor states that for $d < 2(r-1)\ln(r-1)$, the value $\mathcal{G}_d(M)$ reaches its maximum value at the matrix J_r which has all entries equal to $1/r^2$. We improve this assertion as follows.

Lemma 3.1. There exists an absolute constant r_0 such that for any $r > r_0$, $d < 2r \ln r - \ln r - 2 - r^{-1/6}$ and any $M \in \mathcal{D}_r$, we have $\mathcal{G}_d(M) \leq \mathcal{G}_d(J_r)$.

The proof of Lemma 3.1 follows the analysis from the papers [11, 12, 16, 17] concerning colorings of random k-uniform hypergraphs. E.g., in [11] the second moment method was used to obtain very tight estimates for the panchromatic 3-colorability threshold in a random k-uniform hypergraph (recent advances on panchromatic colorings of hypergraphs can be found in [5]). However, the proofs in [11, 12, 16, 17] hold only for $k \ge 4$, so we were not able to apply them directly to the case of graphs and had to derive some new ideas.

As a corollary of Lemma 3.1 we obtain the following result for the case of fixed np.

Corollary 3.2. Suppose that np = c > 0 is fixed. There exists an absolute constant r_0 such that for any $r > r_0$, $c < 2r \ln r - \ln r - 2 - r^{-1/6}$, we have

 $\Pr(\chi(G(n, c/n)) \le r) \to 1$ as $n \to +\infty$.

Note that this bound for r-colorability threshold is slightly weaker than the result obtained in [6], but it also has a constant gap with the known upper bound.

Lemma 3.1 helps to estimate the second moment of the number of proper balanced r-colorings (i.e. colorings with almost equal sizes of color classes) of a random graph in the uniform model G(n,m) in which m edges are chosen randomly without replacement and $m = \lfloor p \binom{n}{2} \rfloor$. Together with Proposition 3.3 and Lemma 3.4 from [8] it implies that under the condition of Theorem 2.1 it holds that

(3) $\Pr(\chi(G(n,p)) \le r_p) \ge e^{-6(np)^2} n^{-r_p^2}.$

3.2. Completion of the proof

From this moment one can just repeat the argument from [8], so we will not go into any details and will briefly describe the approach.

The inequality (3) shows that r_p colors are not enough to color G(n, p) properly. However, Lemma 4.2 from [8] states that with probability tending to 1 we can color properly almost the whole graph except the vertex subset U_0 of the size at most $n^{3/2}p \ln n$. For small $p \leq n^{-1+1/20}$, we can show that there exists a larger subset $U \supset U_0$ such that

- the subgraph induced on U is 3-colorable;
- its neighborhood N(U) in G(n, p) is an independent set.

Thus, we color U with colors $\{1, 2, 3\}$, $G(n, p) \smallsetminus (U \cup N(U))$ with colors $\{1, \ldots, r_p\}$ and N(U) with color $r_p + 1$.

For large $p \in [n^{-1+1/20}, n^{-3/4-\delta}]$, one can use the approach of Alon and Krivelevich [3] to find a subset $U \supset U_0$ such that $G(n,p) \smallsetminus U$ is still r_p -colorable and every vertex outside U has small number of neighbors in U. After that we can modify a proper r-coloring of $G(n,p) \smallsetminus U$ with additional color $r_p + 1$ to get a small enough number of restrictions for coloring of U which can be colored with the obtained list coloring by the help of the Local Lemma.

3.3. Ideas of the proof of Lemma 3.1

In this section we comment on the proof of Lemma 1. To show that $\mathcal{G}_d(M) \leq$ $\mathcal{G}_d(J_r)$ we consider this difference "by rows":

$$\mathcal{G}_d(J_r) - \mathcal{G}_d(M) = \sum_{i,j=1}^r m_{ij} \ln m_{ij} - d \ln \left(1 - \frac{2}{r} + \sum_{i,j=1}^r m_{ij}^2 \right) - 2 \ln r + d \ln(1 - 1/r)^2 = = \sum_{i,j=1}^r m_{ij} \ln(r^2 m_{ij}) - d \ln \left(1 + \frac{\sum_{i,j=1}^r m_{ij}^2 - 1/r^2}{(1 - 1/r)^2} \right)$$

Now denote

$$g_i(M) = \sum_{j=1}^r m_{ij} \ln(r^2 m_{ij}) - d\left(\frac{\sum_{j=1}^r m_{ij}^2 - 1/r^4}{(1 - 1/r)^2}\right).$$

A row $m_i = (m_{ij}, j = 1, \ldots, r)$ is said to be

- good if every $m_{ij} \leq \frac{1}{r} \frac{2}{r \ln r}$; normal if there exists j such that $m_{ij} \in [\frac{1}{r} \frac{2}{r \ln r}; \frac{1}{r} r^{-7/4}]$; bad if there exists j such that $m_{ij} \in [\frac{1}{r} r^{-7/4}; 1/r]$.

We prove that for any good row m_i ,

$$g_i(M) \ge \frac{r^2}{4} \sum_{j:m_{ij} < 1/r^2} \left(m_{ij} - \frac{1}{r^2} \right)^2 + \frac{r}{2} \sum_{j:m_{ij} > 1/r^2} \left(m_{ij} - \frac{1}{r^2} \right)^2;$$

and for any normal row

$$g_i(M) \ge \frac{1}{8}r^{-7/4}\ln r.$$

Finally, we consider the bad rows simultaneously. Let $I \subset \{1, \ldots, r\}$ denote the set of indexes corresponding to the bad rows. Then we show that

$$Z_{I} = \sum_{i \in I} \sum_{j=1}^{r} m_{ij} \ln(r^{2}m_{ij}) - d \ln \left(1 + \frac{\sum_{i \in I} \sum_{j=1}^{r} m_{ij}^{2} - 1/r^{2}}{(1 - 1/r)^{2}} \right)$$
$$\geq \frac{|I| \ln r}{2r^{2}} \left(\frac{|I|}{r} - 1 \right) + \frac{|I|}{r^{2+1/6}} - O\left(\frac{\ln r}{r^{3/2}}\right).$$

Note that

$$\mathcal{G}_d(J_r) - \mathcal{G}_d(M) \ge \sum_{i \notin I} g_i(M) + Z_I.$$

In the final part of the proof we consider different cases for the number of bad rows |I| and show that the above estimate is always positive.

References

- 1. Achlioptas D. and Naor A., The two possible values of the chromatic number of a random graph, Ann. of Math 162 (2005), 1335–1351.
- Achlioptas D. and Friedgut E., A sharp threshold for k-colorability, Random Structures Algorithms 14 (1999), 63–70.
- Alon N. and Krivelevich M., The concentration of the chromatic number of random graphs, Combinatorica 17 (1997), 303–313.
- 4. Bollobás B., The chromatic number of random graphs, Combinatorica 8 (1988), 49-56.
- 5. Cherkashin D., Note on panchromatic colorings, Discrete Math. 341, (2018), 652–657.
- Coja-Oghlan A. and Vilenchik D., The chromatic number of random graphs for most average degrees, Int. Math. Res. Not. 2016 (2015), 5801–5859.
- Coja-Oghlan A., Upper-bounding the k-colorability threshold by counting covers, Electron. J. Combin. 20 (2013), #32.
- Coja-Oghlan A., Panagiotou K. and Steger A., On the chromatic number of random graphs, J. Combin. Theory Ser. B 98 (2008), 980–993.
- Heckel A., The chromatic number of dense random graphs, Random Structures Algorithms 53 (2018), 140–182.
- Kiselev S. and Raigorodskii A., On the chromatic number of a random subgraph of the Kneser graph, Dokl. Math. 96 (2017), 475–476.
- Kravtsov D., Krokhmal N. and Shabanov D., Panchromatic 3-colorings of random hypergraphs, European J. Combin. 78 (2019), 28–43.
- Kravtsov D., Krokhmal N. and Shabanov D., On panchromatic colourings of a random hypergraph, Russian Math. Surveys 73 (2018), 731–733.
- Kupavskii A., Random Kneser graphs and hypergraphs, Electron. J. Combin. 25 (2018), #P4.52.
- 14. Luczak T., The chromatic number of random graphs, Combinatorica 11 (1991), 45-54.
- Luczak T., A note on the sharp concentration of the chromatic number of random graphs, Combinatorica 11 (1991), 295–297.
- 16. Semenov A. and Shabanov D., On the weak chromatic number of random hypergraphs, Discrete Appl. Math. (2019), https://doi.org/10.1016/j.dam.2019.03.025.
- Shabanov D., On the concentration of the chromatic number of a random hypergraph, Dokl. Math. 96 (2017), 321–325.

S. Kargaltsev, Moscow Institute of Physics and Technology, Department of Data Analysis, Dolgoprudny, Moscow Region, Russia,

 $e\text{-}mail: \verb| stepan.kargaltsev@phystech.edu||$

D. Shabanov, Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia, e-mail:dmitry.shabanov@phystech.edu

T. Shaikheeva, Department of Probability Theory, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia,

 $e\text{-}mail: \verb"talia.shaikheeva@yandex.ru"$

854