MINIMUM DEGREE CONDITIONS FOR POWERS OF CYCLES AND PATHS

ENG KEAT HNG

Abstract

The study of conditions on vertex degrees in a host graph G for the appearance of a target graph H is a major theme in extremal graph theory. The $k^{t h}$ power of a graph F is obtained from F by joining any two vertices at distance at most k. We study minimum degree conditions under which a graph G contains the $k^{t h}$ power of cycles and paths of arbitrary specified lengths. We determine precise thresholds, assuming that the order of G is large. This extends a result of Allen, Böttcher and Hladký concerning the containment of squared paths and squared cycles of arbitrary specified lengths and settles a conjecture of theirs in the affirmative

1. Introduction

The study of conditions on vertex degrees in a host graph G for the appearance of a target graph H is a major theme in extremal graph theory. One of the bestknown results in this area is the following theorem of Dirac about the existence of a Hamiltonian cycle.

Theorem 1.1 (Dirac [2]). Every graph on $n \geq 3$ vertices with minimum degree at least $\frac{n}{2}$ has a Hamiltonian cycle.

The $k^{\text {th }}$ power of a graph G, denoted by G^{k}, is obtained from G by joining any two vertices at distance at most k. In 1962, Pósa conjectured an analogue of Dirac's theorem for the containment of the square of a Hamiltonian cycle. This was extended in 1974 by Seymour to general powers of a Hamiltonian cycle.

Conjecture 1 (Pósa-Seymour). Let $k, n \in \mathbb{N}$. A graph on n vertices with minimum degree at least $\frac{k n}{k+1}$ contains the $k^{t h}$ power of a Hamiltonian cycle.

Fan and Kierstead made significant progress, proving an approximate version of this conjecture for squared paths and squared cycles in sufficiently large graphs [3] and determining the best-possible minimum degree condition for a Hamiltonian squared path [4]. Komlós, Sárközy and Szemerédi confirmed the truth of the Pósa-Seymour Conjecture for sufficiently large graphs.

Theorem 1.2 (Komlós-Sárközy-Szemerédi [6]). For every positive integer k, there exists a positive integer $n_{0}=n_{0}(k)$ such that for all positive integers $n>n_{0}$,
any graph G on n vertices with minimum degree at least $\frac{k n}{k+1}$ contains the $k^{t h}$ power of a Hamiltonian cycle.

In fact, the proof asserts a stronger result, guaranteeing the $k^{t h}$ power of cycles of all lengths between $k+1$ and n which are divisible by $k+1$, in addition to the $k^{t h}$ power of a Hamiltonian cycle.

Theorem 1.3 (Komlós- Sárközy-Szemerédi [6]). For every positive integer k, there exists a positive integer n_{0} such that for all positive integers $n>n_{0}$, any graph G on n vertices with minimum degree $\delta(G) \geq \frac{k n}{k+1}$ contains the $k^{\text {th }}$ power of a cycle $C_{(k+1) l}^{k} \subseteq G$ for any $k+1 \leq(k+1) l \leq n$. If furthermore $K_{k+2} \subseteq G$, then $C_{l}^{k} \subseteq G$ for any $k+1 \leq l \leq n$ such that $\chi\left(C_{\ell}^{k}\right) \leq k+2$.

A natural question which follows is whether we can determine minimum degree conditions which guarantee the presence of the $k^{t h}$ power of paths and cycles of arbitrary given lengths. A reasonable guess is that the answer is characterised by $(k+1)$-partite extremal examples, exemplified by the $k=3$ example in Figure 1a. Allen, Böttcher and Hladký [1] established that this is in fact not the case for $k=2$. They answered the question for squared paths and squared cycles, with sharp thresholds attained by a family of extremal graphs which exhibit not a linear dependence between the length of the longest squared path and the minimum degree, but rather piecewise linear dependence with jumps at certain points.

(a) $K_{n-\delta, n-\delta, n-\delta, 3 \delta-2 n}$

(b) $G_{p}(3, n, \delta)$

Figure 1. Graphs for $k=3$
Obtain the n-vertex graph $G_{p}(k, n, \delta)$ from the disjoint union of $k-1$ independent sets I_{1}, \ldots, I_{k-1} each on $n-\delta$ vertices and r cliques X_{1}, \ldots, X_{r} with $\left|X_{1}\right| \geq \cdots \geq\left|X_{r}\right| \geq\left|X_{1}\right|+1$, by inserting all edges between X_{i} and I_{j} for each $(i, j) \in[r] \times[k-1]$ and all edges between I_{i} and I_{j} for each $(i, j) \in[k-1]^{2}$ with $i \neq j$, and taking the maximal value of r for the minimum degree to be at least δ. This is a natural generalisation of the construction in [1]. Figure 1b shows an example with $k=3$. Construct the graph $G_{c}(k, n, \delta)$ in the same way as $G_{p}(k, n, \delta)$, but also in addition arbitrarily select $v \in X_{1}$, insert all edges between v and X_{i} for each $i \in[r]$ such that $\left|X_{i}\right| \neq\left|X_{1}\right|$ and pick the maximal value of r such that the minimum degree is δ. Note that $G_{p}(k, n, \delta)$ and $G_{c}(k, n, \delta)$ may not share the same value of r. Define $\operatorname{pp}_{k}(n, \delta)$ as the length of the longest $k^{t h}$ power of a path
in $G_{p}(k, n, \delta)$ and $\mathrm{pc}_{k}(n, \delta)$ as the length of the longest $k^{t h}$ power of a cycle in $G_{c}(k, n, \delta)$. The behaviour of $\mathrm{pp}_{3}(n, \delta)$ is illustrated in Figure 2.

Theorem 1.4 (Allen, Böttcher, Hladký [1]). For any $\nu>0$ there exists an integer n_{0} such that for all integers $n>n_{0}$ and $\delta \in\left[\left(\frac{1}{2}+\nu\right) n, \frac{2}{3} n\right]$ the following holds for all graphs G on n vertices with minimum degree $\delta(G) \geq \delta$.
(i) $P_{\mathrm{pp}_{2}(n, \delta)}^{2} \subseteq G$ and $C_{l}^{2} \subseteq G$ for every $l \in \mathbb{N}$ with $3 \leq l \leq \mathrm{pc}_{2}(n, \delta)$ such that 3 divides l.
(ii) Either $C_{l}^{2} \subseteq G$ for every $l \in \mathbb{N}$ with $3 \leq l \leq \operatorname{pc}_{2}(n, \delta)$ and $l \neq 5$, or $C_{l}^{2} \subseteq G$ for every $l \in \mathbb{N}$ with $3 \leq l \leq 6 \delta-3 n-\nu n$ such that 3 divides l.

Figure 2. The behaviour of $\mathrm{pp}_{3}(n, \delta)$

It was conjectured by Allen, Böttcher, and Hladký [1] that their result can be naturally generalised to higher powers. Our main theorem states that their conjecture is indeed true.

Theorem 1.5. Fix $k \geq 3$. For any $\nu>0$ there exists an integer n_{0} such that for all integers $n \geq n_{0}$ and $\delta \in\left[\left(\frac{k-1}{k}+\nu\right) n, \frac{k n}{k+1}\right]$ the following holds for all graphs G on n vertices with minimum degree $\delta(G) \geq \delta$.
(i) $P_{\operatorname{pp}_{k}(n, \delta)}^{k} \subseteq G$ and $C_{\ell}^{k} \subseteq G$ for every $\ell \in \mathbb{N}$ with $\ell \in\left[k+1, \operatorname{pc}_{k}(n, \delta)\right]$ such that $k+1$ divides ℓ.
(ii) Either $C_{\ell}^{k} \subseteq G$ for every $\ell \in \mathbb{N}$ with $\ell \in\left[k+1, \operatorname{pc}_{k}(n, \delta)\right]$ such that $\chi\left(C_{\ell}^{k}\right) \leq$ $k+2$, or $C_{\ell}^{k} \subseteq G$ for every $\ell \in \mathbb{N}$ with $\ell \in[k+1,(k+1)(k \delta-(k-1) n)-\nu n]$ such that $k+1$ divides ℓ.

2. Proof outline

In this section we outline our proof of Theorem 1.5, which uses the well-established technique combining the regularity method and the stability method.

2.1. Regularity method

Szemerédi's regularity lemma [7] states that large graphs can be partitioned into finitely many parts such that the edges between almost any pair of parts are evenly distributed. We use a version which accounts for the high minimum degree of the graphs of interest. Given a regularity partition of a graph G we can obtain an auxiliary graph R, termed a reduced graph of G, in which the vertex set comprises the vertex classes of the partition and the edge set comprises the regular pairs.

We introduce a notion of connectedness for copies of K_{k} in a graph. Given a graph G we say that two copies F and F^{\prime} of K_{k} are K_{k+1}-connected if there exists a sequence of copies of K_{k} starting with F and ending with F^{\prime} such that consecutive copies of K_{k} are part of the same copy of K_{k+1}. This induces an equivalence relation on the copies of K_{k} in G. Call an equivalence class of this equivalence relation a K_{k+1}-connected component of G and a set of vertex-disjoint copies of K_{k+1} which are pairwise K_{k+1}-connected to each other a K_{k+1}-connected-K_{k+1}-factor. Using standard techniques involving the Blow-up Lemma [5] we establish an embedding lemma stating that if we can find a sufficiently large $K_{k+1^{-}}$ connected- K_{k+1}-factor in our reduced graph R then we also have the $k^{t h}$ power of paths and cycles of the desired lengths.

2.2. Stability lemma

Our primary new contribution is proving a stability lemma stating that graphs with high minimum degree which do not contain sufficiently large K_{k+1}-connected-K_{k+1}-factors resemble our extremal constructions, i.e. $G_{p}(k, n, \delta)$ and $G_{c}(k, n, \delta)$. Denote by $C K_{k+1} F(G)$ the maximum number of vertices covered by a $K_{k+1^{-}}$ connected- K_{k+1}-factor in G.

Lemma 2.1. Fix $k \geq 3$. Given $\mu>0$, for any sufficiently small $\eta>0$ there exists m_{0} such that if $\delta \in\left[\left(\frac{k-1}{k}+\mu\right) n, \frac{k n-2}{k+1}\right]$ and G is a graph on $n \geq m_{0}$ vertices with minimum degree $\delta(G) \geq \delta$, then either
(C1) $C K_{k+1} F(G) \geq(k+1)(k \delta-(k-1) n)$, or
(C2) $C K_{k+1} F(G) \geq \operatorname{pp}_{k}(n, \delta+\eta n)$, or
(C3) G has $k-1$ vertex-disjoint independent sets of combined size at least $(k-1)(n-\delta)-3 k \eta n$ whose removal disconnects G into components which are each of size at most $\frac{19}{10}(k \delta-(k-1) n)$ and for each component X all copies of K_{k} in G containing at least one vertex of X are K_{k+1}-connected in G.
Moreover, in (C 2$)$ and $(\mathrm{C} 3)$ each K_{k+1}-component of G contains a copy of K_{k+2}.
While the lemma statement is analogous to the stability lemma proved in [1], the proof is substantially more involved. A key plank of the argument involves
showing that vertices which belong to more than one K_{k+1}-connected component induce a K_{k}-free graph. To this end, we define a family of configurations and prove by induction on k that they are forbidden. Figure 3 and Figure 4 illustrate the configurations for $k=3$ and $k=2$ respectively. Note that the $k=2$ configuration has a $k=3$ analogue.

Figure 3. Three configurations with $k=3$

Figure 4. One configuration with $k=2$

2.3. Sketch proof of Theorem 1.5

Let G be a graph satisfying the hypothesis of Theorem 1.5. The regularity lemma gives a reduced graph R with minimal loss of relative minimum degree. Now apply Lemma 2.1 to R. First consider when we are in cases (C1) and (C2). In these cases, we have large K_{k+1}-connected- K_{k+1}-factors, which allow us to embed the desired $k^{t h}$ power paths and cycles.

Otherwise, we must be in case (C3). This means that R resembles our extremal construction, which in turn implies that G must also be similar to our extremal construction. We complete the proof by showing that a graph of this form must contain the $k^{\text {th }}$ power of the $\mathrm{pp}_{k}(n, \delta)$-vertex path and the $k^{t h}$ power of cycles of (almost) all lengths up to $\operatorname{pc}_{k}(n, \delta)$.

Acknowledgment. The author would like to thank his supervisors, Peter Allen and Julia Böttcher, for many useful discussions and helpful comments.

References

1. Allen P., Böttcher J. and Hladký J., Filling the gap between Turán's Theorem and Pósa's Conjecture, J. London Math. Soc (2) 84 (2011), 269-302.
2. Dirac G. A., Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69-81
3. Fan G. and Kierstead H. A., The square of paths and cycles, J. Combin. Theory Ser. B 63 (1995), 55-64
4. Fan G. and Kierstead H. A., Hamiltonian square-paths, J. Combin. Theory Ser. B 67 (1996), 167-182.
5. Komlós J., Sárközy G. N. and Szemerédi E., Blow-up Lemma, Combinatorica 17 (1997), 109-123
6. Komlós J., Sárközy G. N. and Szemerédi E., Proof of the Seymour conjecture for large graphs, Ann. Comb. 2 (1998), 43-60.
7. Szemerédi E., Regular partitions of graphs, in: Problèmes combinatoires et théorie des graphes, Colloq. Internat. CNRS 260 (J. C. Bermond et al., eds.), Orsay, 1976, CNRS, Paris, 1978, 399-401.

Eng Keat Hng, Department of Mathematics, London School of Economics and Political Science, London, United Kingdom,
e-mail: e.hng@lse.ac.uk

