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MINIMUM DEGREE CONDITIONS FOR POWERS

OF CYCLES AND PATHS

ENG KEAT HNG

Abstract. The study of conditions on vertex degrees in a host graph G for the

appearance of a target graph H is a major theme in extremal graph theory. The
kth power of a graph F is obtained from F by joining any two vertices at distance

at most k. We study minimum degree conditions under which a graph G contains

the kth power of cycles and paths of arbitrary specified lengths. We determine
precise thresholds, assuming that the order of G is large. This extends a result

of Allen, Böttcher and Hladký concerning the containment of squared paths and

squared cycles of arbitrary specified lengths and settles a conjecture of theirs in the
affirmative.

1. Introduction

The study of conditions on vertex degrees in a host graph G for the appearance
of a target graph H is a major theme in extremal graph theory. One of the best-
known results in this area is the following theorem of Dirac about the existence of
a Hamiltonian cycle.

Theorem 1.1 (Dirac [2]). Every graph on n ≥ 3 vertices with minimum degree
at least n

2 has a Hamiltonian cycle.

The kth power of a graph G, denoted by Gk, is obtained from G by joining
any two vertices at distance at most k. In 1962, Pósa conjectured an analogue of
Dirac’s theorem for the containment of the square of a Hamiltonian cycle. This
was extended in 1974 by Seymour to general powers of a Hamiltonian cycle.

Conjecture 1 (Pósa–Seymour). Let k, n ∈ N. A graph on n vertices with
minimum degree at least kn

k+1 contains the kth power of a Hamiltonian cycle.

Fan and Kierstead made significant progress, proving an approximate version of
this conjecture for squared paths and squared cycles in sufficiently large graphs [3]
and determining the best-possible minimum degree condition for a Hamiltonian
squared path [4]. Komlós, Sárközy and Szemerédi confirmed the truth of the
Pósa–Seymour Conjecture for sufficiently large graphs.

Theorem 1.2 (Komlós–Sárközy–Szemerédi [6]). For every positive integer k,
there exists a positive integer n0 = n0(k) such that for all positive integers n > n0,
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any graph G on n vertices with minimum degree at least kn
k+1 contains the kth

power of a Hamiltonian cycle.

In fact, the proof asserts a stronger result, guaranteeing the kth power of cycles
of all lengths between k + 1 and n which are divisible by k + 1, in addition to the
kth power of a Hamiltonian cycle.

Theorem 1.3 (Komlós– Sárközy–Szemerédi [6]). For every positive integer k,
there exists a positive integer n0 such that for all positive integers n > n0, any
graph G on n vertices with minimum degree δ(G) ≥ kn

k+1 contains the kth power

of a cycle Ck(k+1)l ⊆ G for any k + 1 ≤ (k + 1)l ≤ n. If furthermore Kk+2 ⊆ G,

then Ckl ⊆ G for any k + 1 ≤ l ≤ n such that χ(Ck` ) ≤ k + 2.

A natural question which follows is whether we can determine minimum degree
conditions which guarantee the presence of the kth power of paths and cycles of
arbitrary given lengths. A reasonable guess is that the answer is characterised by
(k+ 1)-partite extremal examples, exemplified by the k = 3 example in Figure 1a.
Allen, Böttcher and Hladký [1] established that this is in fact not the case for
k = 2. They answered the question for squared paths and squared cycles, with
sharp thresholds attained by a family of extremal graphs which exhibit not a linear
dependence between the length of the longest squared path and the minimum
degree, but rather piecewise linear dependence with jumps at certain points.

n− δ

n− δ

n− δ

3δ − 2n

(a) Kn−δ,n−δ,n−δ,3δ−2n

n− δ n− δ

x x x

(b) Gp(3, n, δ)

Figure 1. Graphs for k = 3

Obtain the n-vertex graph Gp(k, n, δ) from the disjoint union of k − 1 inde-
pendent sets I1, . . . , Ik−1 each on n − δ vertices and r cliques X1, . . . , Xr with
|X1| ≥ · · · ≥ |Xr| ≥ |X1| + 1, by inserting all edges between Xi and Ij for each
(i, j) ∈ [r]× [k − 1] and all edges between Ii and Ij for each (i, j) ∈ [k − 1]2 with
i 6= j, and taking the maximal value of r for the minimum degree to be at least δ.
This is a natural generalisation of the construction in [1]. Figure 1b shows an ex-
ample with k = 3. Construct the graph Gc(k, n, δ) in the same way as Gp(k, n, δ),
but also in addition arbitrarily select v ∈ X1, insert all edges between v and Xi

for each i ∈ [r] such that |Xi| 6= |X1| and pick the maximal value of r such that
the minimum degree is δ. Note that Gp(k, n, δ) and Gc(k, n, δ) may not share the
same value of r. Define ppk(n, δ) as the length of the longest kth power of a path
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in Gp(k, n, δ) and pck(n, δ) as the length of the longest kth power of a cycle in
Gc(k, n, δ). The behaviour of pp3(n, δ) is illustrated in Figure 2.

Theorem 1.4 (Allen, Böttcher, Hladký [1]). For any ν > 0 there exists an
integer n0 such that for all integers n > n0 and δ ∈ [( 1

2 + ν)n, 23n] the following
holds for all graphs G on n vertices with minimum degree δ(G) ≥ δ.

(i) P 2
pp2(n,δ)

⊆ G and C2
l ⊆ G for every l ∈ N with 3 ≤ l ≤ pc2(n, δ) such that

3 divides l.
(ii) Either C2

l ⊆ G for every l ∈ N with 3 ≤ l ≤ pc2(n, δ) and l 6= 5, or C2
l ⊆ G

for every l ∈ N with 3 ≤ l ≤ 6δ − 3n− νn such that 3 divides l.

δ

4(3δ − 2n)
pp

3
(n, δ)

n

4n

5

3n

5

2n

5

n

5

0

9n

13

7n

10

5n

7

3n

4

1

Figure 2. The behaviour of pp3(n, δ)

It was conjectured by Allen, Böttcher, and Hladký [1] that their result can
be naturally generalised to higher powers. Our main theorem states that their
conjecture is indeed true.

Theorem 1.5. Fix k ≥ 3. For any ν > 0 there exists an integer n0 such

that for all integers n ≥ n0 and δ ∈
[(
k−1
k + ν

)
n, knk+1

]
the following holds for all

graphs G on n vertices with minimum degree δ(G) ≥ δ.

(i) P kppk(n,δ)
⊆ G and Ck` ⊆ G for every ` ∈ N with ` ∈ [k + 1,pck(n, δ)] such

that k + 1 divides `.
(ii) Either Ck` ⊆ G for every ` ∈ N with ` ∈ [k+1,pck(n, δ)] such that χ(Ck` ) ≤

k+2, or Ck` ⊆ G for every ` ∈ N with ` ∈ [k+1, (k+1)(kδ− (k−1)n)−νn]
such that k + 1 divides `.
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2. Proof outline

In this section we outline our proof of Theorem 1.5, which uses the well-established
technique combining the regularity method and the stability method.

2.1. Regularity method

Szemerédi’s regularity lemma [7] states that large graphs can be partitioned into
finitely many parts such that the edges between almost any pair of parts are evenly
distributed. We use a version which accounts for the high minimum degree of the
graphs of interest. Given a regularity partition of a graph G we can obtain an
auxiliary graph R, termed a reduced graph of G, in which the vertex set comprises
the vertex classes of the partition and the edge set comprises the regular pairs.

We introduce a notion of connectedness for copies of Kk in a graph. Given
a graph G we say that two copies F and F ′ of Kk are Kk+1-connected if there
exists a sequence of copies of Kk starting with F and ending with F ′ such that
consecutive copies of Kk are part of the same copy of Kk+1. This induces an
equivalence relation on the copies of Kk in G. Call an equivalence class of this
equivalence relation a Kk+1-connected component of G and a set of vertex-disjoint
copies ofKk+1 which are pairwiseKk+1-connected to each other aKk+1-connected-
Kk+1-factor. Using standard techniques involving the Blow-up Lemma [5] we
establish an embedding lemma stating that if we can find a sufficiently large Kk+1-
connected-Kk+1-factor in our reduced graph R then we also have the kth power of
paths and cycles of the desired lengths.

2.2. Stability lemma

Our primary new contribution is proving a stability lemma stating that graphs
with high minimum degree which do not contain sufficiently large Kk+1-connected-
Kk+1-factors resemble our extremal constructions, i.e. Gp(k, n, δ) and Gc(k, n, δ).
Denote by CKk+1F (G) the maximum number of vertices covered by a Kk+1-
connected-Kk+1-factor in G.

Lemma 2.1. Fix k ≥ 3. Given µ > 0, for any sufficiently small η > 0 there

exists m0 such that if δ ∈
[
(k−1k + µ)n, kn−2k+1

]
and G is a graph on n ≥ m0 vertices

with minimum degree δ(G) ≥ δ, then either

(C1) CKk+1F (G) ≥ (k + 1)(kδ − (k − 1)n), or
(C2) CKk+1F (G) ≥ ppk(n, δ + ηn), or
(C3) G has k − 1 vertex-disjoint independent sets of combined size at least

(k− 1)(n− δ)− 3kηn whose removal disconnects G into components which
are each of size at most 19

10 (kδ − (k − 1)n) and for each component X all
copies of Kk in G containing at least one vertex of X are Kk+1-connected
in G.

Moreover, in (C2) and (C3) each Kk+1-component of G contains a copy of Kk+2.

While the lemma statement is analogous to the stability lemma proved in [1],
the proof is substantially more involved. A key plank of the argument involves
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showing that vertices which belong to more than one Kk+1-connected component
induce a Kk-free graph. To this end, we define a family of configurations and prove
by induction on k that they are forbidden. Figure 3 and Figure 4 illustrate the
configurations for k = 3 and k = 2 respectively. Note that the k = 2 configuration
has a k = 3 analogue.

Figure 3. Three configurations with k = 3

Figure 4. One configuration with k = 2

2.3. Sketch proof of Theorem 1.5

Let G be a graph satisfying the hypothesis of Theorem 1.5. The regularity lemma
gives a reduced graph R with minimal loss of relative minimum degree. Now apply
Lemma 2.1 to R. First consider when we are in cases (C1) and (C2). In these
cases, we have large Kk+1-connected-Kk+1-factors, which allow us to embed the
desired kth power paths and cycles.

Otherwise, we must be in case (C3). This means that R resembles our extremal
construction, which in turn implies that G must also be similar to our extremal
construction. We complete the proof by showing that a graph of this form must
contain the kth power of the ppk(n, δ)-vertex path and the kth power of cycles of
(almost) all lengths up to pck(n, δ).
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