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NEARLY k-DISTANCE SETS

N. FRANKL and A. KUPAVSKII

Abstract. We say that S ⊂ Rd is an ε-nearly k-distance set if there exist 1 ≤
t1 ≤ · · · ≤ tk such that the distance between any two distinct points of S falls into
[t1, t1 + ε] ∪ · · · ∪ [tk, tk + ε]. In this abstract, we propose to study the quantity

Mk(d) := limε→0 max{|S| : S is an ε-nearly k-distance set in Rd}. Let mk(d) be
the maximal cardinality of a k-distance set in Rd. We show that Mk(d) = mk(d) if

either d ≥ d(k) or k ≤ 3.

We also address a closely related Turán-type problem, studied by Erdős, Makai,
Pach, and Spencer in the 80’s: given n points in Rd, how many pairs out of them

form a distance that belongs to [t1, t1 + 1] ∪ · · · ∪ [tk, tk + 1], where t1, . . . , tk are

fixed and any two points in the set are at distance at least 1 apart? We obtain an
exact answer for the same k, d as above.

1. Introduction

We call any point set that determines at most k distances a k-distance set. Let us
denote by mk(d) the cardinality of the largest k-distance set in Rd. Determining
the value of mk(d) is a well studied hard question, which is in general wide open.
The best known bounds are

(1)

(
d+ 1

k

)
≤ mk(d) ≤

(
d+ k

k

)
.

Here, the lower bound follows from a simple construction in {0, 1}d+1, and the
upper bound is due to Bannai, Bannai and Stanton [1].

In this abstract, we consider an “approximate” version of this problem. A set
of points S ⊆ Rd is called an ε-nearly k-distance set if there exist 1 ≤ t1 ≤ · · · ≤ tk
such that

‖p− q‖ ∈ [t1, t1 + ε] ∪ · · · ∪ [tk, tk + ε]

for all p 6= q ∈ S.
We put Mk(d) := limε→0 max{|S| : S is an ε-nearly k-distance set in Rd}. The

quantity Mk(d) was generally overlooked in the literature. The only reference we
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found is a brief mention by Erdős, Makai and Pach in a recent preprint [7, page 19],
where they also write: “For k fixed, d sufficiently large probably Mk(d) = mk(d).”
We confirm this.

Theorem 1.1. Fix a positive integer k. Mk(d) = mk(d) holds if either d ≥ d(k)
or k ≤ 3.

We also study the following related problem. We call S separated if the distance
between any two of its points is at least 1. Let Mk(d, n) denote the maximum M ,
such that there exist numbers 1 ≤ t1 ≤ · · · ≤ tk and a separated set S of n points
in Rd with at least M pairs of points at distance that falls into [t1, t1 + 1] ∪ · · · ∪
[tk, tk + 1].

This quantity was studied by Erdős, Makai, Pach and Spencer [6, 7, 8, 10].
In [8], they showed that M1(d, n) = T (d, n) holds for sufficiently large n, where
T (d, n) is the number of edges in a balanced complete d-partite graph on n vertices.
In [7], they proved that

M2(d, n) =
n2

2

(
1− 1

m2(d)
+ o(1)

)
,

moreover, for d 6= 4, 5 they determined the exact value of M2(d, n) and showed
that the same remains true if in the definition of M2(d, n) we change the intervals
to be of the form [ti, ti + cn1/d] for some constant c > 0.

We strengthen and extend their results.

Theorem 1.2. Fix k. If either k ≤ 3 or d ≥ d(k), then for sufficiently large n
we have

Mk(d, n) = T (mk(d− 1), n).

Moreover, the same holds for intervals of the form [ti, ti + cn1/d] with some c =
c(k, d) > 0.

Concerning the “≥” part of the displayed inequality above, one can see that
a stronger bound Mk(d, n) ≥ T (Mk(d − 1), n) ≥ T (mk(d − 1), n) is true for any
k ≥ 1, d ≥ 2. This is shown by the following construction, which is similar to
those that appeared in the works of Erdős, Makai, Pach and Spencer. Embed a
1
2 -nearly k-distance set S ⊆ Rd−1 of size Mk(d− 1) and with distances 2n2 ≤ t1 ≤
· · · ≤ tk in a hyperplane γ in Rd. Replace each point p ∈ S by an arithmetic
progression Ap of length bn/Mk(d − 1)c or dn/Mk(d − 1)e and of difference 1, in
the direction orthogonal to γ. One can easily check that in

⋃
p∈S Ap there are at

least T (Mk(d− 1), n) pairs forming a distance in [t1, t1 + 1] ∪ · · · ∪ [tk, tk + 1].

2. Comparing mk(d) with Mk(d), and constructions

In this section we explore differences between k-distance and ε-nearly k-distance
sets. Note that Mk(d) ≥ mk(d) for all k, d ≥ 1.

Proposition. Mk(d) ≥ max {
∏s

i=1mki(di) :
∑s

i=1 ki = k,
∑s

i=1 di = d} holds
for every k, d ≥ 1.
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Proof. Take non-negative integers ki, di, such that
∑s

i=1 ki =k and
∑s

i=1 di =d.
Then there is an ε-nearly k-distance set in Rd of cardinality

∏s
i=1mki

(di) given
by the following construction. For each i let Si be a ki-distance set in Rdi of
cardinality mki

(di) and such that the distances in Si are much larger (in terms
of ε) than the distances in Si−1. Then S1×· · ·×Ss is an ε-nearly equal k-distance
set in Rd of cardinality

∏s
i=1mki

(di). �

We may use this bound to show that mk(d) = Mk(d) is not always the case.
Indeed, for example, in R2 the cardinality of the largest 6-distance set is 13, while
the product of two arithmetic progressions of length 4 gives a ε-nearly 6-distance
sets of cardinality 16. We however believe that Mk(d) = M ′k(d) is true for all but
very few pairs (k, d).

The difference between mk(d) and Mk(d) for fixed d and growing k is very

significant. In Rd the cardinality of a k-distance set is O
(
k

d
2+1
)

, by combining the

result of Solymosi and Vu [11] with the result of Guth and Katz [9]. However, the
product of d arithmetic progressions of size bk/dc+1 gives a ε-nearly k-distance set
of cardinality (bk/dc+1)d ≥ (k/d)d. While determining the order of magnitude of
mk(d) for fixed d is a difficult open problem, we could find the order of magnitude
of Mk(d) for large k by a simple inductive proof.

Theorem 2.1. Mk(d) = Θ
(
kd
)

holds for any fixed d ≥ 2.

3. Proof outlines

Proof of Theorem 1.1 for fixed k, large d. First note that if we required that
for a fixed constant K ti

ti−1
≤ K holds for any 1 < i ≤ k, then a standard

compactness argument would imply Mk(d) = mk(d). Therefore we may assume
that max1<i≤k

ti
ti−1

> K for some sufficiently large K.

For a sufficiently small ε consider an ε-nearly k-distance set S ⊆ Rd with
distances 1 ≤ t1 ≤ · · · ≤ tk, and assume that 1 < i ≤ k is the largest index for
which ti

ti−1
> K. Colour a pair {p, q} (p, q ∈ S) with blue if ‖p− q‖ ≥ ti and with

red otherwise. Let B be the largest blue clique. Then by the triangle inequality S
can be partitioned into |B| vertex-disjoint red cliques R1, . . . , R|B| satisfying the
following properties.

1. Each Ri shares exactly one vertex with B.
2. If p ∈ Ri, q ∈ Rj , i 6= j, then {p, q} is blue.

We obtain |B| ≤ mk−i+1(d) by using a compactness argument. We wish to
bound each |Rb| by using induction on k. Let c > 0 be a sufficiently small constant.
We separate two cases.

Case 1: There is an k ≥ l > i such that tl
tl−1
≤ 1 + c. Then by a compactness

argument we obtain |B| ≤ mk−i(d). Moreover, by induction on k we have |Rb| ≤
mi−1 for each b ∈ {1, . . . , |B|}. Thus using (1) we conclude that

|S| = |R1|+ · · ·+ |R|B|| ≤ mi−1(d)mk−i(d) ≤ mk(d)

holds for large d.
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Case 2: mink≥l>i
tl

tl−1
> c. Then, if K is sufficiently large,1 by the triangle

inequality we obtain the following. For each red clique R and each b ∈ BrR there
is a q ≥ i such that ‖b − r‖ ∈ [tq, tq + ε] for every r ∈ R. Using this, we obtain
that if B is “essentially contained” in a subspace of dimension j, then each Rb is
“essentially contained” in a subspace of dimension d − j. Hence by inducting on
k we conclude that

|S| = |R1|+ · · ·+ |R|B|| ≤ mi(j)mk−i(d− j) ≤ mk(d).

�

Proof of Theorem 1.2. Observe that Mk(d, n) ≤ T (Mk(d), n) is obvious for any
d, k ≥ 1 from Turan’s theorem and the definition of Mk(d). The difficulty in
proving Theorem 1.2 lies in relating Mk(d, n) with k-distance sets in one dimension
smaller.

In our proof we combine the methods similar to those of of Erdős, Makai, Pach
and Spencer with new ideas that use extremal graph theory and probabilistic
arguments.

We use the following result of Erdős.

Theorem 3.1 ([5]). Every n-vertex graph with at least T (n, ` − 1) + 1 edges
contains an edge that is contained in δn`−2 cliques of size `, where δ is a constant
that depends on `.

The proof goes indirectly as follows. Assume that there is a separated set
S ⊆ Rd and distances t1 ≤ · · · ≤ tk such that there are more than T (n,mk(d− 1))
pairs in S that span a distance in [t1, t1 + 1] ∪ · · · ∪ [tk, tk + 1]. Then conclude
that there are ε-nearly k-distance sets in Rd−1 of cardinality mk(d− 1) + 1. This,
together with Theorem 1.1, leads to a contradiction.

The main conceptual difference with the proofs of Erdős, Makai, Pach and
Spencer is that, while they reduced the problem to the existence of k-distance sets
of cardinality mk(d − 1) + 1 directly, we passed by the “intermediate” step and
showed that Mk(d− 1) = mk(d− 1). This helped to isolate the difficulties of both
parts of the argument (that have a very different nature) and make the approach
more transparent and thus more powerful.

The main technical difficulty is that, rather than working with ε-nearly k-
distance sets, we had to work with almost flat ε-nearly k-distance sets S: for
all but at most two points p ∈ S, all vectors p− q, q ∈ S, form a very small angle
with a fixed hyperplane. We thus needed to show that, for the k and d in question,
the maximal cardinality of almost flat nearly k-distance sets in Rd is the same as
that of k-distance sets. Working with almost flat ε-nearly k-distance sets involves
a lot of additional geometric considerations. �
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1The choice of K varies for different values of i.
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Pěst. Mat. 94 (1969), 290–296.
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