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ON HEILBRONN TRIANGLE-TYPE PROBLEMS
IN HIGHER DIMENSIONS

F. S. BENEVIDES, C. HOPPEN, H. LEFMANN and K. ODERMANN

Abstract. The Heilbronn triangle problem is a classical geometrical problem that
asks for a placement of n points in the unit-square [0, 1]2, that maximizes the small-
est area of a triangle formed by those points. This problem has natural generaliza-
tions to higher dimensions. For integers k, d ≥ 2 and a set P of n points in [0, 1]d, let
s = min{(k− 1), d} and V

(d)
k (P) be the minimum s-dimensional volume of the con-

vex hull of k points in P. Here, instead of considering the supremum of V (d)
k (P), we

consider its average value, ∆̃
(d)
k (n), when the n points in P are chosen independently

and uniformly at random in [0, 1]d. We prove that ∆̃
(d)
k (n) = Θ

(
n

−k
1+|d−k+1|

)
, for

every fixed k, d ≥ 2.

1. Introduction and main results

Given n ≥ 3 and a set P = {P1, . . . , Pn} of n points in [0, 1]2, let A(P) be the
minimum area of a triangle with all vertices in P. The Heilbronn triangle problem
asks, for each n, for the supremum of A(P) over all choices of P. We call this
value ∆3(n).

The exact value of ∆3(n) is known only for n ≤ 7, and the problem is still
wide open for all n > 7. This problem has a rich history (see [5, 6, 16] for some
optimal configurations and constructive lower bounds). For general n, a trivial
upper bound, given by splitting the square into squares of side length

√
3/n and

using pigeonhole principle, is ∆3(n) ≤ 3/(2n). Erdős established the lower bound
∆3(n) = Ω(1/n2), while Roth [14] and Schmidt [15] found upper bounds on ∆3(n).
For large n, the best known lower and upper bounds are by Komlós, Pintz and
Szemerédi [10, 11], for constants c1, c2 > 0:

c1
log n

n2
≤ ∆3(n) ≤ 2c2

√
logn

n
8
7

.

A generalization of this problem has been considered by Schmidt [15] for in-
tegers n ≥ k ≥ 3. For a set P of n points in [0, 1]2, let Ak(P) be the mini-
mum area of the convex hull of k distinct points in P, and let ∆k(n) be the
supremum of Ak(P). For fixed k ≥ 3, the currently best known lower bound is
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∆k(n) = Ω((log n)1/(k−2)/n(k−1)/(k−2)), see [12]. However, for fixed k ≥ 4, only
the (trivial) upper bound ∆k(n) = O(1/n) is known.

An extension to dimension d, for d ≥ 3, was also considered by Barequet
and Naor [1, 2]. The (k − 1)-dimensional volume of the convex hull of k points
P1, . . . , Pk ∈ [0, 1]d, 2 ≤ k ≤ d+ 1, is given by

V
(d)
k (P1, . . . , Pk) :=

1

(k − 1)!
·
k∏
i=2

dist(Pi; [P1, . . . , Pi−1]),

where dist(Pi; [P1, . . . , Pi−1]) is the Euclidean distance of Pi to the affine space
[P1, . . . , Pi−1]. For k > d + 1 we compute the d-dimensional volume by splitting
the convex hull of P1, . . . , Pk into interior disjoint d-simplices.

Given k, d and a placement P of n points in [0, 1]d, let s = min{(k− 1), d} and
let V (d)

k (P) be the minimum s-dimensional volume of the convex hull of k distinct
points in P, and let ∆

(d)
k (n) be the supremum of V (d)

k (P) over all choices of P
with |P| = n. For fixed d and k, where 3 ≤ k ≤ d+1, the best known lower bound
for ∆

(d)
k is ∆

(d)
k (n) = Ω((log n)1/(d−k+2)/n(k−1)/(d−k+2)), see [13].

In connection with range searching problems, Chazelle [4] investigated ∆
(d)
k (n)

when k is a function of n. He showed that, in any fixed dimension d ≥ 2, for
log n ≤ k ≤ n, we have the asymptotically correct order Θ(k/n) for ∆

(d)
k (n).

These problems have proved to be remarkably difficult, and it was natural to
address a simpler problem, namely to determine the average value of V (d)

k (P)

when each point in a placement P ⊂ [0, 1]d of n points is chosen independently
and uniformly at random, denoted ∆̃

(d)
k (n). Note this is also well-defined for d = 1

(there is a well-known short proof for ∆̃
(1)
2 (n) = 1/(n− 1)2).

Jiang, Li and Vitány [9] showed that ∆̃
(2)
3 (n) = Θ(1/n3) using Kolmogorov

complexity. Grimmett and Janson [7] strengthened this to limn→∞(n3 ·∆̃(2)
3 (n)) =

1/2, and also determined the analogous limit when the n points are chosen with
more general probability distributions. They also found the asymptotic probability
distribution of A3(P) (and, more generally, of the size of the `-th smallest triangle).

In our work, we determine the order of ∆̃
(d)
k (n) for every fixed d and k.

Theorem 1.1. Let d, k ≥ 2 be fixed integers. There exist positive constants
cd,k and Cd,k such that, for n sufficiently large, it is

cd,k

n
k

1+|d−k+1|
≤ ∆̃

(d)
k (n) ≤ Cd,k

n
k

1+|d−k+1|
.

In this note, we prove some cases of Theorem 1.1 to illustrate how the full
argument goes. One can also show a discretized version, i.e., a d-dimensional
K × · · · ×K-grid is embedded on [0, 1]d and points are placed on the grid-points,
where K is sufficiently large in terms of n. The arguments are rather similar and
integrals become sums.
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2. Areas of triangles in [0, 1]2

We first give a detailed argument for Theorem 1.1 in the case k = 3 and d = 2 and
then briefly sketch the argument for fixed k ≥ 3 and d = 2, whose ideas can be
generalized to any fixed k, d ≥ 3. Note that the case k = 3 and d = 2 was already
solved in the literature [7, 9], but our proof is very short and works as a model for
the other cases. Let dist(P,Q) denote the Euclidean distance between the points
P and Q.

Proposition 2.1. Let P1, P2, P3 be points selected independently and uniformly
at random from [0, 1]2. Let T be the triangle P1P2P3. Then, for every 0 ≤ A ≤ 1,

A ≤ P(area(T ) ≤ A) ≤ 12A.

Sketch. For the lower bound, suppose that the first two points P1, P2 have
been selected. If there is no point Q in [0, 1]2 such that the triangle P1P2Q has
area larger than A, then the probability that the area of T is at most A is 1.
Otherwise, there is a point Q in [0, 1]2 such that the triangle P1P2Q has area A.
The probability that the area of T is at most A is at least the probability that P3

lies in the triangle P1P2Q, which is equal to A.
For the upper bound, for each i, j ∈ {1, 2, 3}, consider the case where PiPj is

the longest side of the triangle and use the union bound. In each case, the third
point is contained in a rectangle of area 4A. �

Lemma 2.2. For any n ≥ 3, we have ∆̃
(2)
3 (n) ≥ 1/(8n3).

Proof. Place n points independently and uniformly at random in the unit-square
[0, 1]2. We set A = 1/(4n3). By Proposition 2.1 and the union bound, the proba-
bility that at least one of the triangles with vertices among the n points has area
at most A is at most 12A ·

(
n
3

)
≤ 1/2. Then, by Markov’s inequality, the expected

area ∆̃
(2)
3 (n) of a triangle of minimum area is at least 1/(8n3). �

For the upper bound, we will use the following Suen-type correlation inequality
(see Theorem 1 in [8]). For distinct events B1, B2, B3 in a probability space,
B1 ∼ B2 denotes that B1 and B2 are dependent, and B1 ∼ {B2, B3} denotes that
B1 is not mutually independent of the set {B2, B3}, that is, it is dependent on B2

or B3 or B2 ∩B3.

Theorem 2.3. Let B1, . . . , Bk be distinct events in a given probability space.
Let M =

∏k
i=1 P(Bi) and D =

∑
Bi∼Bj P(Bi ∧ Bj). Assume that for every pair

of distinct dependent events Bi ∼ Bj the number of events Bg with Bg ∼ {Bi, Bj}
is at most α and that P(Bi) ≤ ε for every i ∈ {1, . . . , k}. Then,

P
(
∧ki=1Bi

)
≤M · e

D
(1−ε)α .

Lemma 2.4. For all sufficiently large n, we have ∆̃
(2)
3 (n) ≤ 18/n3.

Proof. Place n points independently and uniformly at random in [0, 1]2. For
each set I of three of those points, TI is the triangle with vertices in I.
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We shall give an upper bound on the probability that all triangles have ‘large’
area. Fix 0 < A ≤ 1. For each x ∈ {1, . . . , b2 lnnc}, let B(x)

I denote the event
“area(TI) ≤ Cx/n3”, for a suitable constant C > 0. By Proposition 2.1, we have

Cx

n3
≤ P(B

(x)
I ) ≤ 12Cx

n3
= ε(x).

For I 6= J , the events B(x)
I and B

(x)
J are dependent only if the triangles

TI and TJ have exactly one vertex or one side in common. In the first case,
let I = {P1, P2, P3} and J = {P1, Q1, Q2}. Without loss of generality, place
P1, P2, P3, Q1, Q2 in [0, 1]2 in this order. The event B(x)

I happens with probabil-
ity at most 12Cx/n3. Regardless of P1’s position, for each z ∈ [0,

√
2] (where√

2 is the longest possible distance between points in [0, 1]2), the probability that
dist(P1, Q1) is in the infinitesimal interval [z, z + dz] is at most 2πz dz (i.e., the
area of the appropriate annulus). For B(x)

J to hold, the last point, Q2, is contained
in a rectangle of area at most 4

√
2Cx/(zn3).

In the second case, denoting the length of the common side PP ′ of TI and
TJ by y, place one endpoint of the common side anywhere in [0, 1]2; the other
endpoint, P ′, satisfies that dist(P, P ′) is in the infinitesimal interval [y, y + dy]
with probability at most 2πy dy, and the two remaining vertices of TI and TJ
must be contained in a rectangle of area at most min{1, 4

√
2C/(yn3)}. For n

sufficiently large, we conclude that

D(x) =
∑

B
(x)
I ∼B

(x)
J

P(B
(x)
I ∧B(x)

J )

≤
(
n

5

)
12Cx

n3

∫ √2

0

4
√

2Cx

zn3
2πz dz +

(
n

4

)∫ √2

0

(
min

{
1,

4
√

2Cx

yn3

})2
2πy dy

≤ 8πC2x2

5n
+

192πC2x2 lnn

n2
≤ 1.7πC2x2

n
.

Moreover, letting
(
[n]
3

)
be the set of all subsets of three points, by Proposition 2.1

we have

M (x) =
∏

I∈([n]
3 )

P
(
B

(x)
I

)
≤
(

1− Cx

n3

)(n3)
.

Now, use Theorem 2.3. Clearly, maxBI∼BJ |{G ∈
(
[n]
3

)
: BG ∼ {BI , BJ}}| ≤ 3n2,

for n ≥ 15. Setting α = 3n2, using that 1 + z ≤ ez, for all z, and x ≤ 2 lnn, we
infer that, for n large,

P(∧
I∈([n]

3 )B
(x)
I ) ≤M (x) · e

D(x)

(1−ε(x))α ≤
(

1− Cx

n3

)(n3)
· exp

(
1.7πC2x2/n(
1− 12Cx

n3

)3n2

)

≤ exp

(
−Cx
n3

(n− 2)3

6

)
· exp

(
2πC2x2

n

)
≤ exp

(
−Cx

7

)
.(1)
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Therefore, letting C = 7, the probability that the minimum area of a triangle
is larger than 7x/n3 is at most e−x. In particular, the probability that such area
is in the range [7x/n3, 7(x+ 1)/n3] is also at most e−x.

By the result of Komlós, Pintz and Szemerédi [10] mentioned before, for a
constant c > 0 and n sufficiently large, in any placement of n points in the unit-
square [0, 1]2 the minimum area of a triangle is at most 2c

√
logn/n8/7.

Thus, for n large, the average minimum area ∆̃
(2)
3 (n) of a triangle satisfies

∆̃3

(2)
(n) ≤

b2 lnnc∑
x=0

1

ex
· 7(x+ 1)

n3
+ e−2 lnn · 2c

√
logn

n
8
7

=

b2 lnnc∑
x=0

1

ex
· 7(x+ 1)

n3
+

1

n2
· 2c
√
logn

n
8
7

≤ 18

n3
,

where we used
∑∞
x=0 7(x+ 1)/ex = 7e2/(e− 1)2 ≤ 17.6 < 18. �

Remark: If instead of the upper bound 2c
√
logn/n8/7 we had used only the trivial

upper bound ∆3(n) ≤ 3/(2n), we would obtain (19.1)/n3 instead of 18/n3 in the
above result.

3. Areas of convex hulls of k points in [0, 1]2

The goal of this section is to discuss briefly the bounds on ∆̃
(2)
k (n), when k ≥ 4 is

fixed. First, we generalize Lemma 2.2.

Lemma 3.1. Let k ≥ 3 be fixed. For n sufficiently large, we have

∆̃
(2)
k (n) ≥ ((k − 2)!)

1/(k−2)

8nk/(k−2)
,

Proof. Place n points independently and uniformly at random in the unit-square
[0, 1]2. For each set J of k of those points, let KJ be their convex hull. Clearly,
if KJ has area at most B, then every triangle PgPhPi with {Pg, Ph, Pi} ⊆ J
has area at most B. Fix some J and assume without loss of generality that
J = {P1, . . . , Pk}.

Let S be the event “area(KJ) ≤ B” and Eg,h be the event “the distance between
the points Pg and Ph is at least as large as the distance between the other pairs
of points in the set J”. By the union bound, we have

(2) P(S) ≤
∑

1≤g<h≤k

P(S ∩ Eg,h).

To compute P(S ∩Eg,h), note that for any choice of Pg and Ph any other point Pt
from J must lie in a rectangle of area at most 4B. Since these points are chosen
independently, we have P(S ∩ Eg,h) ≤ (4B)k−2, hence, expression (2) is at most(
k
2

)
(4B)k−2.
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If we set B = c/nk/(k−2), by the union bound, the probability that at least one
of the convex hulls KJ has area at most B is bounded above by(

n

k

)(
k

2

)
(4B)k−2 ≤ (4c)k−2

2 · (k − 2)!
.

In particular, if we choose c = (1/4)
(
(k − 2)!

)1/(k−2), the above upper bound is
1/2, and by Markov’s inequality, we have

∆̃
(2)
k (n) ≥

(
1− (4c)k−2

2 · (k − 2)!

)
·B =

1

2
· c

n
k
k−2

=
((k − 2)!)

1
k−2

8n
k
k−2

. �

For a configuration of k points P1, . . . , Pk in [0, 1]2, we define Pi and Pj to be
extremal points if their Euclidean distance is at least as large as the distance of
any pair of the points P1, . . . , Pk.

Lemma 3.2. Let k ≥ 3 be fixed. There is an absolute constant Ck > 0 such
that, for n sufficiently large, we have ∆̃

(2)
k (n) ≤ Ck/nk/(k−2).

Proof. Place n points independently and uniformly at random in the unit-square
[0, 1]2. For each subset I of k points, let KI be the convex hull of points in I.
We give an upper bound on the probability that every KI has ‘large’ area. By
our previous result, we know that P(area(KI) ≤ B) ≤

(
k
2

)
(4B)k−2 ≤ k2(4B)k−2.

Moreover, by Proposition 2.1, we have P(area(KI) ≤ B) ≥ Bk−2, for B ≤ 1.
Let B(x)

I denote the event “area(KI) ≤ B(x)”, where B(x) = Cx/nk/(k−2) for
a suitable constant C > 0, x ∈ {1, . . . , b(2 lnn)1/(k−2)c} and a subset I containing
k of the n points. We have

(Cx)k−2

nk
≤ P(B

(x)
I ) ≤ k24k−2(Cx)k−2

nk
= ε(x).

Fix distinct k-element sets I and J of points. The events B(x)
I and B

(x)
J are

dependent only if I and J intersect non-empty. Let ` = |I ∩ J |, and assume
1 ≤ ` ≤ k − 1. Let I = {P1, . . . , Pk}, and J = {P1, . . . , P`, Q`+1, . . . , Qk}. We
estimate the probability P(B

(x)
I ∧B(x)

J ).
First let ` = 1, thus |I ∩ J | = 1. Given P1, there are two possibilities for the

convex hulls of KI and KJ , respectively: (i) P1 is an extremal point for KI or KJ ,
or (ii) P1 is not an extremal point for KI nor KJ .

Adding the two sub-cases, for ` = 1, we can show for constants C ′, C ′′ > 0 that

D
(x)
1 =

∑
B

(x)
I ∼B

(x)
J ; |I∩J|=1

P(B
(x)
I ∧B(x)

J )

≤ C ′(4B(x))2k−4n2k−1 ≤ C ′′(Cx)2k−4

n
.(3)

Next let KI and KJ have exactly ` points in common, 2 ≤ ` ≤ k − 1. Given
the points P1, . . . , P`, there are three possibilities for the convex hulls of the points
P1, . . . , Pk and P1, . . . , P`, Q`+1, . . . , Qk, respectively: (i) two of the common points
P1, . . . , P` are extremal for KI or KJ ; (ii) case (i) does not hold and exactly one of
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the points P1, . . . , P` is extremal for KI or KJ ; (iii) none of the points P1, . . . , P`
is extremal for KI or KJ .

The largest upper bound for the probability that the convex hulls of KI and
KJ have area at most B(x) arises in case (iii) and is at most

C ′′ ·B(x)2k−`−2 · ln3 n,(4)

for a constant C ′′ > 0. This bound comes from multiplying C ′(4B(x))2k−`−4 by∫ √2

0

d
√
2/ye+1∑

t=−d
√
2/ye−1;
t 6=0

min

{
1,

4
√

2B(x)

|t|y

} d
√
2/ye+1∑

s=−d
√
2/ye−1;

s 6=0

min

{
1,

4
√

2B(x)

|s|y

}
· 2πy dy.

By (4) and because B(x) = Cx/nk/(k−2), we infer that for ` ≥ 2

D
(x)
` =

∑
B

(x)
I ∼B

(x)
J ; |I∩J|=`

P(B
(x)
I ∧B(x)

J ) ≤ C ′′ · (Cx)2k−`−2

n
2k−2`
k−2

· ln3 n.(5)

From equations (3) and (5), together with x ≤ (2 lnn)1/(k−2), k ≥ 4, and n large,
we have a constant C ′′′ > 0 such that

D(x) =
∑

B
(x)
I ∼B

(x)
J

P(B
(x)
I ∧B(x)

J ) =

k−1∑
`=1

D
(x)
` ≤ C ′′′x2k−4 · ln3 n

n
2
k−2

≤ 4C ′′′ ln5 n

n
2
k−2

.

Moreover, using 1 + z ≤ ez for all z, for n large,

M (x) =
∏

I∈([n]
k )

P(B
(x)
I ) ≤

(
1− (Cx)k−2

nk

)(nk)
≤ e−

(Cx)k−2

nk
(nk) ≤ e−

(Cx)k−2

2 k! .

We have max
B

(x)
I ∼B

(x)
J

|{G ∈
(
[n]
k

)
: B

(x)
G ∼ {B(x)

I , B
(x)
J }}| ≤ 3k2nk−1 = α. For n

sufficiently large, (1−ε(x))α ≥ 1/2. Hence, by x ≤ (2 lnn)1/(k−2) and Theorem 2.3,

P(∧
I∈([n]

k )B
(x)
I ) ≤M (x) · exp

(
4C ′′′ · ln5 n

n
2
k−2 (1− ε(x))α

)

≤ exp

(
− (Cx)k−2

2 k!

)
· exp

(
8C ′′′ · ln5 n

n
2
k−2

)
≤ exp

(
−(Cx)k−2

3 · k!

)
.

Then, for C = (3 ·k!)1/(k−2), the probability that the minimum area of the convex
hull of k points is within the range [Cx/nk/(k−2), C(x + 1)/nk/(k−2)] is at most
e−x

k−2

. Splitting the unit-square [0, 1]2 into squares of side length
√
k/n and using

the pigeonhole principle one shows that ∆
(2)
k (n) ≤ k/n. Therefore we have

∆̃
(2)
k (n) ≤

b(2 lnn)
1
k−2 c∑

x=0

e−x
k−2

· C(x+ 1)

n
k
k−2

+ e−2 lnn · k
n

= O

(
1

n
k
k−2

)
. �
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