ON HEILBRONN TRIANGLE-TYPE PROBLEMS IN HIGHER DIMENSIONS

F. S. BENEVIDES, C. HOPPEN, H. LEFMANN and K. ODERMANN

Abstract

The Heilbronn triangle problem is a classical geometrical problem that asks for a placement of n points in the unit-square $[0,1]^{2}$, that maximizes the smallest area of a triangle formed by those points. This problem has natural generalizations to higher dimensions. For integers $k, d \geq 2$ and a set \mathcal{P} of n points in $[0,1]^{d}$, let $s=\min \{(k-1), d\}$ and $V_{k}^{(d)}(\mathcal{P})$ be the minimum s-dimensional volume of the convex hull of k points in \mathcal{P}. Here, instead of considering the supremum of $V_{k}^{(d)}(\mathcal{P})$, we consider its average value, $\widetilde{\Delta}_{k}^{(d)}(n)$, when the n points in \mathcal{P} are chosen independently and uniformly at random in $[0,1]^{d}$. We prove that $\widetilde{\Delta}_{k}^{(d)}(n)=\Theta\left(n^{\frac{-k}{1+|d-k+1|}}\right)$, for every fixed $k, d \geq 2$.

1. Introduction and main results

Given $n \geq 3$ and a set $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ of n points in $[0,1]^{2}$, let $A(\mathcal{P})$ be the minimum area of a triangle with all vertices in \mathcal{P}. The Heilbronn triangle problem asks, for each n, for the supremum of $A(\mathcal{P})$ over all choices of \mathcal{P}. We call this value $\Delta_{3}(n)$.

The exact value of $\Delta_{3}(n)$ is known only for $n \leq 7$, and the problem is still wide open for all $n>7$. This problem has a rich history (see $[\mathbf{5}, \mathbf{6}, \mathbf{1 6}]$ for some optimal configurations and constructive lower bounds). For general n, a trivial upper bound, given by splitting the square into squares of side length $\sqrt{3 / n}$ and using pigeonhole principle, is $\Delta_{3}(n) \leq 3 /(2 n)$. Erdős established the lower bound $\Delta_{3}(n)=\Omega\left(1 / n^{2}\right)$, while Roth [14] and Schmidt [15] found upper bounds on $\Delta_{3}(n)$. For large n, the best known lower and upper bounds are by Komlós, Pintz and Szemerédi $[\mathbf{1 0}, \mathbf{1 1}]$, for constants $c_{1}, c_{2}>0$:

$$
c_{1} \frac{\log n}{n^{2}} \leq \Delta_{3}(n) \leq \frac{2^{c_{2} \sqrt{\log n}}}{n^{\frac{8}{7}}}
$$

A generalization of this problem has been considered by Schmidt [15] for integers $n \geq k \geq 3$. For a set \mathcal{P} of n points in $[0,1]^{2}$, let $A_{k}(\mathcal{P})$ be the minimum area of the convex hull of k distinct points in \mathcal{P}, and let $\Delta_{k}(n)$ be the supremum of $A_{k}(\mathcal{P})$. For fixed $k \geq 3$, the currently best known lower bound is
$\Delta_{k}(n)=\Omega\left((\log n)^{1 /(k-2)} / n^{(k-1) /(k-2)}\right)$, see [12]. However, for fixed $k \geq 4$, only the (trivial) upper bound $\Delta_{k}(n)=O(1 / n)$ is known.

An extension to dimension d, for $d \geq 3$, was also considered by Barequet and Naor $[\mathbf{1}, \mathbf{2}]$. The $(k-1)$-dimensional volume of the convex hull of k points $P_{1}, \ldots, P_{k} \in[0,1]^{d}, 2 \leq k \leq d+1$, is given by

$$
V_{k}^{(d)}\left(P_{1}, \ldots, P_{k}\right):=\frac{1}{(k-1)!} \cdot \prod_{i=2}^{k} \operatorname{dist}\left(P_{i} ;\left[P_{1}, \ldots, P_{i-1}\right]\right),
$$

where $\operatorname{dist}\left(P_{i} ;\left[P_{1}, \ldots, P_{i-1}\right]\right)$ is the Euclidean distance of P_{i} to the affine space [P_{1}, \ldots, P_{i-1}]. For $k>d+1$ we compute the d-dimensional volume by splitting the convex hull of P_{1}, \ldots, P_{k} into interior disjoint d-simplices.

Given k, d and a placement \mathcal{P} of n points in $[0,1]^{d}$, let $s=\min \{(k-1), d\}$ and let $V_{k}^{(d)}(\mathcal{P})$ be the minimum s-dimensional volume of the convex hull of k distinct points in \mathcal{P}, and let $\Delta_{k}^{(d)}(n)$ be the supremum of $V_{k}^{(d)}(\mathcal{P})$ over all choices of \mathcal{P} with $|\mathcal{P}|=n$. For fixed d and k, where $3 \leq k \leq d+1$, the best known lower bound for $\Delta_{k}^{(d)}$ is $\Delta_{k}^{(d)}(n)=\Omega\left((\log n)^{1 /(d-k+2)} / n^{(k-1) /(d-k+2)}\right)$, see [13].

In connection with range searching problems, Chazelle [4] investigated $\Delta_{k}^{(d)}(n)$ when k is a function of n. He showed that, in any fixed dimension $d \geq 2$, for $\log n \leq k \leq n$, we have the asymptotically correct order $\Theta(k / n)$ for $\Delta_{k}^{(d)}(n)$.

These problems have proved to be remarkably difficult, and it was natural to address a simpler problem, namely to determine the average value of $V_{k}^{(d)}(\mathcal{P})$ when each point in a placement $\mathcal{P} \subset[0,1]^{d}$ of n points is chosen independently and uniformly at random, denoted $\widetilde{\Delta}_{k}^{(d)}(n)$. Note this is also well-defined for $d=1$ (there is a well-known short proof for $\left.\widetilde{\Delta}_{2}^{(1)}(n)=1 /(n-1)^{2}\right)$.

Jiang, Li and Vitány [9] showed that $\widetilde{\Delta}_{3}^{(2)}(n)=\Theta\left(1 / n^{3}\right)$ using Kolmogorov complexity. Grimmett and Janson $[7]$ strengthened this to $\lim _{n \rightarrow \infty}\left(n^{3} \cdot \widetilde{\Delta}_{3}^{(2)}(n)\right)=$ $1 / 2$, and also determined the analogous limit when the n points are chosen with more general probability distributions. They also found the asymptotic probability distribution of $A_{3}(\mathcal{P})$ (and, more generally, of the size of the ℓ-th smallest triangle).

In our work, we determine the order of $\widetilde{\Delta}_{k}^{(d)}(n)$ for every fixed d and k.
Theorem 1.1. Let $d, k \geq 2$ be fixed integers. There exist positive constants $c_{d, k}$ and $C_{d, k}$ such that, for n sufficiently large, it is

$$
\frac{c_{d, k}}{n^{\frac{k}{1+|d-k+1|}}} \leq \widetilde{\Delta}_{k}^{(d)}(n) \leq \frac{C_{d, k}}{n^{\frac{k}{1+|d-k+1|}}} .
$$

In this note, we prove some cases of Theorem 1.1 to illustrate how the full argument goes. One can also show a discretized version, i.e., a d-dimensional $K \times \cdots \times K$-grid is embedded on $[0,1]^{d}$ and points are placed on the grid-points, where K is sufficiently large in terms of n. The arguments are rather similar and integrals become sums.

2. Areas of triangles in $[0,1]^{2}$

We first give a detailed argument for Theorem 1.1 in the case $k=3$ and $d=2$ and then briefly sketch the argument for fixed $k \geq 3$ and $d=2$, whose ideas can be generalized to any fixed $k, d \geq 3$. Note that the case $k=3$ and $d=2$ was already solved in the literature $[\mathbf{7}, \mathbf{9}]$, but our proof is very short and works as a model for the other cases. Let $\operatorname{dist}(P, Q)$ denote the Euclidean distance between the points P and Q.

Proposition 2.1. Let P_{1}, P_{2}, P_{3} be points selected independently and uniformly at random from $[0,1]^{2}$. Let T be the triangle $P_{1} P_{2} P_{3}$. Then, for every $0 \leq A \leq 1$,

$$
A \leq \mathbf{P}(\operatorname{area}(T) \leq A) \leq 12 A
$$

Sketch. For the lower bound, suppose that the first two points P_{1}, P_{2} have been selected. If there is no point Q in $[0,1]^{2}$ such that the triangle $P_{1} P_{2} Q$ has area larger than A, then the probability that the area of T is at most A is 1 . Otherwise, there is a point Q in $[0,1]^{2}$ such that the triangle $P_{1} P_{2} Q$ has area A. The probability that the area of T is at most A is at least the probability that P_{3} lies in the triangle $P_{1} P_{2} Q$, which is equal to A.

For the upper bound, for each $i, j \in\{1,2,3\}$, consider the case where $P_{i} P_{j}$ is the longest side of the triangle and use the union bound. In each case, the third point is contained in a rectangle of area $4 A$.

Lemma 2.2. For any $n \geq 3$, we have $\widetilde{\Delta}_{3}^{(2)}(n) \geq 1 /\left(8 n^{3}\right)$.
Proof. Place n points independently and uniformly at random in the unit-square $[0,1]^{2}$. We set $A=1 /\left(4 n^{3}\right)$. By Proposition 2.1 and the union bound, the probability that at least one of the triangles with vertices among the n points has area at most A is at most $12 A \cdot\binom{n}{3} \leq 1 / 2$. Then, by Markov's inequality, the expected area $\widetilde{\Delta}_{3}^{(2)}(n)$ of a triangle of minimum area is at least $1 /\left(8 n^{3}\right)$.

For the upper bound, we will use the following Suen-type correlation inequality (see Theorem 1 in $[8]$). For distinct events B_{1}, B_{2}, B_{3} in a probability space, $B_{1} \sim B_{2}$ denotes that B_{1} and B_{2} are dependent, and $B_{1} \sim\left\{B_{2}, B_{3}\right\}$ denotes that B_{1} is not mutually independent of the set $\left\{B_{2}, B_{3}\right\}$, that is, it is dependent on B_{2} or B_{3} or $B_{2} \cap B_{3}$.

Theorem 2.3. Let B_{1}, \ldots, B_{k} be distinct events in a given probability space. Let $M=\prod_{i=1}^{k} \mathbf{P}\left(\overline{B_{i}}\right)$ and $D=\sum_{B_{i} \sim B_{j}} \mathbf{P}\left(B_{i} \wedge B_{j}\right)$. Assume that for every pair of distinct dependent events $B_{i} \sim B_{j}$ the number of events B_{g} with $B_{g} \sim\left\{B_{i}, B_{j}\right\}$ is at most α and that $\mathbf{P}\left(B_{i}\right) \leq \varepsilon$ for every $i \in\{1, \ldots, k\}$. Then,

$$
\mathbf{P}\left(\wedge_{i=1}^{k} \overline{B_{i}}\right) \leq M \cdot \mathrm{e}^{\frac{D}{(1-\varepsilon)^{\alpha}}}
$$

Lemma 2.4. For all sufficiently large n, we have $\widetilde{\Delta}_{3}^{(2)}(n) \leq 18 / n^{3}$.
Proof. Place n points independently and uniformly at random in $[0,1]^{2}$. For each set I of three of those points, T_{I} is the triangle with vertices in I.

We shall give an upper bound on the probability that all triangles have 'large' area. Fix $0<A \leq 1$. For each $x \in\{1, \ldots,\lfloor 2 \ln n\rfloor\}$, let $B_{I}^{(x)}$ denote the event "area $\left(T_{I}\right) \leq C x / n^{3 "}$, for a suitable constant $C>0$. By Proposition 2.1, we have

$$
\frac{C x}{n^{3}} \leq \mathbf{P}\left(B_{I}^{(x)}\right) \leq \frac{12 C x}{n^{3}}=\varepsilon(x)
$$

For $I \neq J$, the events $B_{I}^{(x)}$ and $B_{J}^{(x)}$ are dependent only if the triangles T_{I} and T_{J} have exactly one vertex or one side in common. In the first case, let $I=\left\{P_{1}, P_{2}, P_{3}\right\}$ and $J=\left\{P_{1}, Q_{1}, Q_{2}\right\}$. Without loss of generality, place $P_{1}, P_{2}, P_{3}, Q_{1}, Q_{2}$ in $[0,1]^{2}$ in this order. The event $B_{I}^{(x)}$ happens with probability at most $12 C x / n^{3}$. Regardless of P_{1} 's position, for each $z \in[0, \sqrt{2}]$ (where $\sqrt{2}$ is the longest possible distance between points in $[0,1]^{2}$), the probability that $\operatorname{dist}\left(P_{1}, Q_{1}\right)$ is in the infinitesimal interval $[z, z+\mathrm{d} z]$ is at most $2 \pi z \mathrm{~d} z$ (i.e., the area of the appropriate annulus). For $B_{J}^{(x)}$ to hold, the last point, Q_{2}, is contained in a rectangle of area at most $4 \sqrt{2} C x /\left(z n^{3}\right)$.

In the second case, denoting the length of the common side $P P^{\prime}$ of T_{I} and T_{J} by y, place one endpoint of the common side anywhere in $[0,1]^{2}$; the other endpoint, P^{\prime}, satisfies that $\operatorname{dist}\left(P, P^{\prime}\right)$ is in the infinitesimal interval $[y, y+\mathrm{d} y]$ with probability at most $2 \pi y \mathrm{~d} y$, and the two remaining vertices of T_{I} and T_{J} must be contained in a rectangle of area at $\operatorname{most} \min \left\{1,4 \sqrt{2} C /\left(y n^{3}\right)\right\}$. For n sufficiently large, we conclude that

$$
\begin{aligned}
D^{(x)} & =\sum_{B_{I}^{(x)} \sim B_{J}^{(x)}} \mathbf{P}\left(B_{I}^{(x)} \wedge B_{J}^{(x)}\right) \\
& \leq\binom{ n}{5} \frac{12 C x}{n^{3}} \int_{0}^{\sqrt{2}} \frac{4 \sqrt{2} C x}{z n^{3}} 2 \pi z \mathrm{~d} z+\binom{n}{4} \int_{0}^{\sqrt{2}}\left(\min \left\{1, \frac{4 \sqrt{2} C x}{y n^{3}}\right\}\right)^{2} 2 \pi y \mathrm{~d} y \\
& \leq \frac{8 \pi C^{2} x^{2}}{5 n}+\frac{192 \pi C^{2} x^{2} \ln n}{n^{2}} \leq \frac{1.7 \pi C^{2} x^{2}}{n}
\end{aligned}
$$

Moreover, letting $\binom{[n]}{3}$ be the set of all subsets of three points, by Proposition 2.1 we have

$$
M^{(x)}=\prod_{I \in\binom{[n]}{3}} \mathbf{P}\left(\overline{B_{I}^{(x)}}\right) \leq\left(1-\frac{C x}{n^{3}}\right)^{\binom{n}{3}}
$$

Now, use Theorem 2.3. Clearly, $\max _{B_{I} \sim B_{J}}\left|\left\{G \in\binom{[n]}{3}: B_{G} \sim\left\{B_{I}, B_{J}\right\}\right\}\right| \leq 3 n^{2}$, for $n \geq 15$. Setting $\alpha=3 n^{2}$, using that $1+z \leq \mathrm{e}^{z}$, for all z, and $x \leq 2 \ln n$, we infer that, for n large,

$$
\begin{align*}
\mathbf{P}\left(\wedge_{I \in\binom{[n]}{3}} \overline{B_{I}^{(x)}}\right) & \leq M^{(x)} \cdot \mathrm{e}^{\frac{D^{(x)}}{(1-\varepsilon(x))^{\alpha}}} \leq\left(1-\frac{C x}{n^{3}}\right)^{\binom{n}{3}} \cdot \exp \left(\frac{1.7 \pi C^{2} x^{2} / n}{\left(1-\frac{12 C x}{n^{3}}\right)^{3 n^{2}}}\right) \\
& \leq \exp \left(\frac{-C x}{n^{3}} \frac{(n-2)^{3}}{6}\right) \cdot \exp \left(\frac{2 \pi C^{2} x^{2}}{n}\right) \leq \exp \left(-\frac{C x}{7}\right) \tag{1}
\end{align*}
$$

Therefore, letting $C=7$, the probability that the minimum area of a triangle is larger than $7 x / n^{3}$ is at most e^{-x}. In particular, the probability that such area is in the range $\left[7 x / n^{3}, 7(x+1) / n^{3}\right]$ is also at most e^{-x}.

By the result of Komlós, Pintz and Szemerédi [10] mentioned before, for a constant $c>0$ and n sufficiently large, in any placement of n points in the unitsquare $[0,1]^{2}$ the minimum area of a triangle is at most $2^{c \sqrt{\log n}} / n^{8 / 7}$.

Thus, for n large, the average minimum area $\widetilde{\Delta}_{3}^{(2)}(n)$ of a triangle satisfies

$$
\begin{aligned}
{\widetilde{\Delta_{3}}}^{(2)}(n) & \leq \sum_{x=0}^{\lfloor 2 \ln n\rfloor} \frac{1}{\mathrm{e}^{x}} \cdot \frac{7(x+1)}{n^{3}}+\mathrm{e}^{-2 \ln n} \cdot \frac{2^{c \sqrt{\log n}}}{n^{\frac{8}{7}}} \\
& =\sum_{x=0}^{\lfloor 2 \ln n\rfloor} \frac{1}{\mathrm{e}^{x}} \cdot \frac{7(x+1)}{n^{3}}+\frac{1}{n^{2}} \cdot \frac{2^{c \sqrt{\log n}}}{n^{\frac{8}{7}}} \leq \frac{18}{n^{3}},
\end{aligned}
$$

where we used $\sum_{x=0}^{\infty} 7(x+1) / \mathrm{e}^{x}=7 e^{2} /(\mathrm{e}-1)^{2} \leq 17.6<18$.
Remark: If instead of the upper bound $2^{c \sqrt{\log n}} / n^{8 / 7}$ we had used only the trivial upper bound $\Delta_{3}(n) \leq 3 /(2 n)$, we would obtain $(19.1) / n^{3}$ instead of $18 / n^{3}$ in the above result.

3. Areas of convex hulls of k points in $[0,1]^{2}$

The goal of this section is to discuss briefly the bounds on $\widetilde{\Delta}_{k}^{(2)}(n)$, when $k \geq 4$ is fixed. First, we generalize Lemma 2.2.

Lemma 3.1. Let $k \geq 3$ be fixed. For n sufficiently large, we have

$$
\widetilde{\Delta}_{k}^{(2)}(n) \geq \frac{((k-2)!)^{1 /(k-2)}}{8 n^{k /(k-2)}}
$$

Proof. Place n points independently and uniformly at random in the unit-square $[0,1]^{2}$. For each set J of k of those points, let K_{J} be their convex hull. Clearly, if K_{J} has area at most B, then every triangle $P_{g} P_{h} P_{i}$ with $\left\{P_{g}, P_{h}, P_{i}\right\} \subseteq J$ has area at most B. Fix some J and assume without loss of generality that $J=\left\{P_{1}, \ldots, P_{k}\right\}$.

Let S be the event "area $\left(K_{J}\right) \leq B$ " and $E_{g, h}$ be the event "the distance between the points P_{g} and P_{h} is at least as large as the distance between the other pairs of points in the set $J^{\prime \prime}$. By the union bound, we have

$$
\begin{equation*}
\mathbf{P}(S) \leq \sum_{1 \leq g<h \leq k} \mathbf{P}\left(S \cap E_{g, h}\right) \tag{2}
\end{equation*}
$$

To compute $\mathbf{P}\left(S \cap E_{g, h}\right)$, note that for any choice of P_{g} and P_{h} any other point P_{t} from J must lie in a rectangle of area at most $4 B$. Since these points are chosen independently, we have $\mathbf{P}\left(S \cap E_{g, h}\right) \leq(4 B)^{k-2}$, hence, expression (2) is at most $\binom{k}{2}(4 B)^{k-2}$ 。

If we set $B=c / n^{k /(k-2)}$, by the union bound, the probability that at least one of the convex hulls K_{J} has area at most B is bounded above by

$$
\binom{n}{k}\binom{k}{2}(4 B)^{k-2} \leq \frac{(4 c)^{k-2}}{2 \cdot(k-2)!}
$$

In particular, if we choose $c=(1 / 4)((k-2)!)^{1 /(k-2)}$, the above upper bound is $1 / 2$, and by Markov's inequality, we have

$$
\widetilde{\Delta}_{k}^{(2)}(n) \geq\left(1-\frac{(4 c)^{k-2}}{2 \cdot(k-2)!}\right) \cdot B=\frac{1}{2} \cdot \frac{c}{n^{\frac{k}{k-2}}}=\frac{((k-2)!)^{\frac{1}{k-2}}}{8 n^{\frac{k}{k-2}}}
$$

For a configuration of k points P_{1}, \ldots, P_{k} in $[0,1]^{2}$, we define P_{i} and P_{j} to be extremal points if their Euclidean distance is at least as large as the distance of any pair of the points P_{1}, \ldots, P_{k}.

Lemma 3.2. Let $k \geq 3$ be fixed. There is an absolute constant $C_{k}>0$ such that, for n sufficiently large, we have $\widetilde{\Delta}_{k}^{(2)}(n) \leq C_{k} / n^{k /(k-2)}$.

Proof. Place n points independently and uniformly at random in the unit-square $[0,1]^{2}$. For each subset I of k points, let K_{I} be the convex hull of points in I. We give an upper bound on the probability that every K_{I} has 'large' area. By our previous result, we know that $\mathbf{P}\left(\operatorname{area}\left(K_{I}\right) \leq B\right) \leq\binom{ k}{2}(4 B)^{k-2} \leq k^{2}(4 B)^{k-2}$. Moreover, by Proposition 2.1, we have $\mathbf{P}\left(\operatorname{area}\left(K_{I}\right) \leq B\right) \geq B^{k-2}$, for $B \leq 1$.

Let $B_{I}^{(x)}$ denote the event "area $\left(K_{I}\right) \leq B(x)$ ", where $B(x)=C x / n^{k /(k-2)}$ for a suitable constant $C>0, x \in\left\{1, \ldots,\left\lfloor(2 \ln n)^{1 /(k-2)}\right\rfloor\right\}$ and a subset I containing k of the n points. We have

$$
\frac{(C x)^{k-2}}{n^{k}} \leq \mathbf{P}\left(B_{I}^{(x)}\right) \leq \frac{k^{2} 4^{k-2}(C x)^{k-2}}{n^{k}}=\varepsilon(x)
$$

Fix distinct k-element sets I and J of points. The events $B_{I}^{(x)}$ and $B_{J}^{(x)}$ are dependent only if I and J intersect non-empty. Let $\ell=|I \cap J|$, and assume $1 \leq \ell \leq k-1$. Let $I=\left\{P_{1}, \ldots, P_{k}\right\}$, and $J=\left\{P_{1}, \ldots, P_{\ell}, Q_{\ell+1}, \ldots, Q_{k}\right\}$. We estimate the probability $\mathbf{P}\left(B_{I}^{(x)} \wedge B_{J}^{(x)}\right)$.

First let $\ell=1$, thus $|I \cap J|=1$. Given P_{1}, there are two possibilities for the convex hulls of K_{I} and K_{J}, respectively: (i) P_{1} is an extremal point for K_{I} or K_{J}, or (ii) P_{1} is not an extremal point for K_{I} nor K_{J}.

Adding the two sub-cases, for $\ell=1$, we can show for constants $C^{\prime}, C^{\prime \prime}>0$ that

$$
\begin{align*}
D_{1}^{(x)} & =\sum_{B_{I}^{(x)} \sim B_{J}^{(x)} ;|I \cap J|=1} \mathbf{P}\left(B_{I}^{(x)} \wedge B_{J}^{(x)}\right) \\
& \leq C^{\prime}(4 B(x))^{2 k-4} n^{2 k-1} \leq \frac{C^{\prime \prime}(C x)^{2 k-4}}{n} \tag{3}
\end{align*}
$$

Next let K_{I} and K_{J} have exactly ℓ points in common, $2 \leq \ell \leq k-1$. Given the points P_{1}, \ldots, P_{ℓ}, there are three possibilities for the convex hulls of the points P_{1}, \ldots, P_{k} and $P_{1}, \ldots, P_{\ell}, Q_{\ell+1}, \ldots, Q_{k}$, respectively: (i) two of the common points P_{1}, \ldots, P_{ℓ} are extremal for K_{I} or K_{J}; (ii) case (i) does not hold and exactly one of
the points P_{1}, \ldots, P_{ℓ} is extremal for K_{I} or K_{J}; (iii) none of the points P_{1}, \ldots, P_{ℓ} is extremal for K_{I} or K_{J}.

The largest upper bound for the probability that the convex hulls of K_{I} and K_{J} have area at most $B(x)$ arises in case (iii) and is at most

$$
\begin{equation*}
C^{\prime \prime} \cdot B(x)^{2 k-\ell-2} \cdot \ln ^{3} n \tag{4}
\end{equation*}
$$

for a constant $C^{\prime \prime}>0$. This bound comes from multiplying $C^{\prime}(4 B(x))^{2 k-\ell-4}$ by

$$
\int_{0}^{\sqrt{2}} \sum_{\substack{t=-\lceil\sqrt{2} / y\rceil-1 ; \\ t \neq 0}}^{\lceil\sqrt{2} / y\rceil+1} \min \left\{1, \frac{4 \sqrt{2} B(x)}{|t| y}\right\} \sum_{\substack{s=-\lceil\sqrt{2} / y\rceil-1 ; \\ s \neq 0}}^{\lceil\sqrt{2} / y\rceil+1} \min \left\{1, \frac{4 \sqrt{2} B(x)}{|s| y}\right\} \cdot 2 \pi y \mathrm{~d} y
$$

By (4) and because $B(x)=C x / n^{k /(k-2)}$, we infer that for $\ell \geq 2$

$$
\begin{equation*}
D_{\ell}^{(x)}=\sum_{B_{I}^{(x)} \sim B_{J}^{(x)} ;|I \cap J|=\ell} \mathbf{P}\left(B_{I}^{(x)} \wedge B_{J}^{(x)}\right) \leq C^{\prime \prime} \cdot \frac{(C x)^{2 k-\ell-2}}{n^{\frac{2 k-2 \ell}{k-2}}} \cdot \ln ^{3} n \tag{5}
\end{equation*}
$$

From equations (3) and (5), together with $x \leq(2 \ln n)^{1 /(k-2)}, k \geq 4$, and n large, we have a constant $C^{\prime \prime \prime}>0$ such that

$$
D^{(x)}=\sum_{B_{I}^{(x)} \sim B_{J}^{(x)}} \mathbf{P}\left(B_{I}^{(x)} \wedge B_{J}^{(x)}\right)=\sum_{\ell=1}^{k-1} D_{\ell}^{(x)} \leq \frac{C^{\prime \prime \prime} x^{2 k-4} \cdot \ln ^{3} n}{n^{\frac{2}{k-2}}} \leq \frac{4 C^{\prime \prime \prime} \ln ^{5} n}{n^{\frac{2}{k-2}}}
$$

Moreover, using $1+z \leq e^{z}$ for all z, for n large,

$$
M^{(x)}=\prod_{I \in\binom{[n]}{k}} \mathbf{P}\left(\overline{B_{I}^{(x)}}\right) \leq\left(1-\frac{(C x)^{k-2}}{n^{k}}\right)^{\binom{n}{k}} \leq \mathrm{e}^{-\frac{(C x)^{k-2}}{n^{k}}\binom{n}{k}} \leq \mathrm{e}^{-\frac{(C x)^{k-2}}{2 k!}}
$$

We have $\max _{B_{I}^{(x)} \sim B_{J}^{(x)}}\left|\left\{G \in\binom{[n]}{k}: B_{G}^{(x)} \sim\left\{B_{I}^{(x)}, B_{J}^{(x)}\right\}\right\}\right| \leq 3 k^{2} n^{k-1}=\alpha$. For n sufficiently large, $(1-\varepsilon(x))^{\alpha} \geq 1 / 2$. Hence, by $x \leq(2 \ln n)^{1 /(k-2)}$ and Theorem 2.3,

$$
\begin{aligned}
\mathbf{P}\left(\wedge_{I \in\binom{[n]}{k}} \overline{B_{I}^{(x)}}\right) & \leq M^{(x)} \cdot \exp \left(\frac{4 C^{\prime \prime \prime} \cdot \ln ^{5} n}{n^{\frac{2}{k-2}}(1-\varepsilon(x))^{\alpha}}\right) \\
& \leq \exp \left(-\frac{(C x)^{k-2}}{2 k!}\right) \cdot \exp \left(\frac{8 C^{\prime \prime \prime} \cdot \ln ^{5} n}{n^{\frac{2}{k-2}}}\right) \\
& \leq \exp \left(\frac{-(C x)^{k-2}}{3 \cdot k!}\right)
\end{aligned}
$$

Then, for $C=(3 \cdot k!)^{1 /(k-2)}$, the probability that the minimum area of the convex hull of k points is within the range $\left[C x / n^{k /(k-2)}, C(x+1) / n^{k /(k-2)}\right]$ is at most $\mathrm{e}^{-x^{k-2}}$. Splitting the unit-square $[0,1]^{2}$ into squares of side length $\sqrt{k / n}$ and using the pigeonhole principle one shows that $\Delta_{k}^{(2)}(n) \leq k / n$. Therefore we have

$$
\widetilde{\Delta}_{k}^{(2)}(n) \leq \sum_{x=0}^{\left\lfloor(2 \ln n)^{\frac{1}{k-2}}\right\rfloor} \mathrm{e}^{-x^{k-2}} \cdot \frac{C(x+1)}{n^{\frac{k}{k-2}}}+\mathrm{e}^{-2 \ln n} \cdot \frac{k}{n}=O\left(\frac{1}{n^{\frac{k}{k-2}}}\right)
$$

Acknowledgment. This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and DAAD via PROBRAL (CAPES Proc. 88881.143993/2017-01 and DAAD 57391132). C. Hoppen acknowledges the support of CNPq (308054/2018-0). F. Benevides acknowledges the support CNPq (Proc. 437841/2018-9, Proc. 314374/2018-3).

References

1. Barequet G., A lower bound for Heilbronn's triangle problem in d dimensions, SIAM J. Discrete Math. 14 (2001), 230-236.
2. Barequet G. and Naor J., Large $k-D$ simplices in the D-dimensional unit cube, in: Proc. "17th Canadian Conf. on Computational Geometry CCCG'05", 2005, 31-34.
3. Bertram-Kretzberg C., Hofmeister T. and Lefmann H., An algorithm for Heilbronn's problem, SIAM J. Comput. 30 (2000), 383-390.
4. Chazelle B., Lower bounds on the complexity of polytope range searching, J. Amer. Math. Soc. 2 (1989), 637-666.
5. Comellas F. and Yebra J., New lower bounds for Heilbronn numbers, Electron. J. Combin. 9 (2002), \#6.
6. Goldberg M., Maximizing the smallest triangle made by N points in a square, Math. Magazine 45 (1972), 135-144.
7. Grimmett G. and Janson S., On smallest triangles, Random Structures Algorithms 23 (2003), 206-223.
8. Janson S., New versions of Suen's correlation inequality, Random Structures Algorithms 13 (1998), 467-483.
9. Jiang T., Li M. and Vitány P., The average case area of Heilbronn-type triangles, Random Structures Algorithms 20 (2002), 206-219.
10. Komlós J., Pintz J. and Szemerédi E., On Heilbronn's triangle problem, J. Lond. Math. Soc. 24 (1981), 385-396.
11. Komlós J., Pintz J. and Szemerédi E., A lower bound for Heilbronn's problem, J. Lond. Math. Soc. 25 (1982), 13-24.
12. Lefmann H., Distributions of points in the unit-square and large k-gons, European J. Combin. 29 (2008), 946-965.
13. Lefmann H., Distributions of points in d dimensions and large k-point simplices, Discrete Comput. Geom. 40 (2008), 401-413.
14. Roth K. F., Developments in Heilbronn's triangle problem, Adv. Math. 22 (1976), 364-385.
15. Schmidt W. M., On a problem of Heilbronn, J. Lond. Math. Soc. 4 (1972), 545-550.
16. Zeng Z. and Chen L., On the Heilbronn optimal configuration of seven points in the square, in: Lecture Notes in Comput. Sci. 6301, 2011, 196-224.
F. S. Benevides, Universidade Federal do Ceará, Fortaleza, Brazil, e-mail: fabricio@mat.ufc.br
C. Hoppen, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, e-mail: choppen@ufrgs.br
H. Lefmann, Technische Universität Chemnitz, Chemnitz, Germany,
e-mail: lefmann@informatik.tu-chemnitz.de
K. Odermann, Technische Universität Chemnitz, Chemnitz, Germany,
e-mail: knut.odermann@informatik.tu-chemnitz.de
