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RECENT DEVELOPMENTS ON UNAVOIDABLE PATTERNS

IN 2-COLORINGS OF THE COMPLETE GRAPH

Y. CARO, A. HANSBERG and A. MONTEJANO

Abstract. In this manuscript, we review recent developments concerning unavoid-

able patterns in 2-edge colorings of the complete graph.

1. Introduction

Given a graph G, the 2-color Ramsey number of G is the minimum integer R(G)
such that, for every n ≥ R(G), there is a monochromatic copy of G in any
2-coloring of E(Kn). The existence of the Ramsey number R(G) is guaranteed by
Ramsey’s Theorem [9], which states that, for sufficiently large n, every 2-coloring
of the complete graph on n vertices contains a monochromatic clique on k ver-
tices. Erdős and Szekeres showed that R(k) = R(Kk) < 22k and Erdős gave the
lower bound R(k) > 2k/2 for k > 2. There have been several improvements of
these bounds but the constant factors of the exponents remain the same. For an
overview on results about Ramsey theory in graphs, see the survey [5].

To force the existence of graphs in other color patterns, we need, as a natural
minimum requirement, not only to ensure a large n, but also a minimum amount
of edges of each color. A 2-edge-colored complete graph K2t is said to be of type A
if the edges of one of the colors induce a complete graph Kt, and it is of type B
if the edges of one of the colors induce two disjoint complete graphs Kt. It has
been shown in [3] that, in both coloring types, there are infinitely many t’s for
which such colorings have precisely half of the edges on each of the colors. It is
clear that every complete graph Kk contained as a subgraph of a type A or a
type B colored Kn will have essentialy the same color pattern as the hostgraph
except for maybe the proportion of colors among the edges. This shows that these
2-edge-colorings are the only types of patterns that are possibly unavoidable in
2-edge-colorings that are far from being monochromatic. Generalizing the classical
Ramsey problem, Bollobás (see [6]) conjectured that for every ε > 0 and every
positive integer k, there is an n0 such that, for n ≥ n0, every 2-edge-coloring of
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Kn with at least ε
(
n
2

)
edges in each color contains a type A or a type B colored

Kk. This conjecture was proved affirmative by Cutler and Montágh in 2008 [6].
In this paper, we discuss the different results that have emerged from or in parallel
to Bollobás’ conjecture which concern improvements, generalizations and similar
approaches of this problem. In particular, we make emphasis on the approach
engaged in [2, 3, 4] by the authors of this manuscript, where we prescind from
the ε-density on the coloring of the edges of Kn to substitute it with a less strong
condition that will let us define another parameter ϕ(n, k), which we show to be
o(n2) [2], that will represent the maximum number of edges of one of the colors
for which there is a 2-edge-coloring of Kn without a type-A or a type-B colored
Kk. This gives the problem also a Turán flavor in the sense that, more generally
for a graph G, we are interested in finding the maximum edge number that can
have the smallest color class in a 2-coloring of E(Kn) which is free of a copy of G
in the prescribed pattern, as well as in characterizing the extremal colorings.

2. Unavoidable patterns in ε-balanced colorings

For 0 < ε < n
2 , we say that a 2-edge-coloring of the complete graph Kn is

ε-balanced, if it contains at least ε
(
n
2

)
edges in each color. As mentioned in the

introduction, Bollobás raised the following conjecture.

Conjecture 2.1 (Bollobás, see [6]). For every 0 < ε < 1
2 and every positive

integer k, there is an integer n(k, ε) such that every ε-balanced 2-edge-coloring of
Kn with n ≥ n(k, ε) contains a type-A or a type-B colored Kk.

Cutler and Montágh [6] proved the conjecture in 2008. They gave a quite
complicated proof relying on probabilistic arguments and yielding an upper bound
of n(k, ε) < 4k/ε. Fox and Sudakov [7] gave a much simpler proof of an upper
bound that is better than Cutler and Montágh’s for small ε. They also showed by
means of a simple probabilistic argument that this bound is tight up to a constant
factor in the exponent for all k and ε.

Theorem 2.2 ([7]). For every 0 < ε < 1
2 , if n ≥ (16/ε)2k+1, then every

ε-balanced 2-edge-coloring of Kn contains a Kk of type A or of type B.

In their paper, Fox and Sudakov [7] also give analogous results for tournaments.

Observe that, if we consider, more generally, a graph G with a certain 2-edge
coloring (instead of a complete graph Kk), then Theorem 2.2 already characterizes
those graphs G for which, for n sufficiently large, every ε-balanced 2-edge-coloring
of Kn contains a color-consistent copy of G. Namely, setting n(G) = k, if n ≥
n(k, ε) and the colored copy of G can be found as a colored-consistent subgraph
of both, a type-A-colored Kk and a type-B-colored Kk, then it will be contained
in every ε-balanced 2-edge-coloring of Kn. If this is not the case, then there will
be infinitely many n’s for which there is a 1

2 -balanced type-A-coloring of Kn or a
type-B-coloring of Kn [3] that will not contain a color-consistent copy of G.
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Recently, Bowen, Lamaison and Müyesser [1] gave and proved a generalization
of Bollobás’ conjecture to q ≥ 2 colors. To do this, they define, for 0 < ε ≤ n

q , the

so-called ε-balanced q-Ramsey number Rq
ε(G) for a graph G equipped with certain

q-edge-coloring: Rq
ε(G) is the minimum integer N such that, for n ≥ N , every

ε-balanced q-edge coloring of Kn contains a color-consistent copy of G. Here,
analogously to the case q = 2, an ε-balanced q-edge coloring means that there are
at least ε

(
n
2

)
edges in each color. If no such N exists, we say that Rq

ε(G) =∞. For
a family F of q-edge-colored graphs, we define Rq

ε(F) as the minimum integer N
such that, for n ≥ N , every q-edge coloring of Kn contains a color-consistent copy
of some G ∈ F . Hence, if k is an even integer and Fk is the family containing a
type-A and a type-B colored Kk, then Theorem 2.2 is equivalent to the following.

Theorem 2.3 ([7]). For every 0 < ε < 1
2 , R

2
ε(Fk) ≤ (16/ε)2k+1.

The q-color version in [1] includes a generalization of the type-A and type-
B colorings of Kk to a family Fq

k of q-edge-colored Kk’s. Similarly to the case
q = 2, this completely characterizes the q-colored graphs G for which Rq

ε(G) <∞.
Moreover, the following generalized version of Theorem 2.2 is given in [1].

Theorem 2.4 ([1]). For every integer q ≥ 2 and every 0 < ε < 1
q , there is a

positive constant c := c(q) such that Rq
ε(Fq

k) ≤ ε−ck.

The bound of Theorem 2.4 is asymptotically tight by a simple probabilistic
construction [1]. In the same paper, the authors also consider the family Mk,l of
certain asymmetric colored graphs G (that appear as color-consistent copies in any
type-A and type-B colored Kn(G)) and show that, for a fixed k, there is a constant

C := C(ε, l) such that R2
ε(Ml,k) ≤ C ·R(k), where R(k) is the the classical Ramsey

number given in the introduction of this paper.

3. Unavoidable patterns in colorings of the complete graph
with at least o(n2) edges of each color

In this section, we will review the results of [2], where we prescind from the
ε-density on the coloring of the edges of Kn to talk about a precise minimum
number of edges in each of the colors, which will prove to be subquadratic in n.
The results in the afore mentioned paper where obtained independently from [6],
[7] and [1] as we were foccussing mostly on the minimum number of edges in a
2-edge coloring of Kn required to guaratee the existence of a color consistent copy
of a graph G with certain color-pattern.

To be more specific, given a graph G with e(G) edges, non-negative integers r
and b such that r + b = e(G), and a 2-coloring f : E(Kn) → {red, blue}, we say
that f induces an (r, b)-colored copy of G, if there is a copy of G in Kn such that
f assigns the color red to exactly r edges and the color blue to exactly b edges
of that copy of G. We say that G is r-tonal if, for n large enough, there is an
integer ϕr(n,G) such that every 2-coloring f : E(Kn) → {red, blue} with more
than ϕr(n,G) edges in each color contains either an (r, e(G)− r)-colored copy or
an (e(G)− r, r)-colored copy of G. In particular, we are interested in e(G)/2-tonal



530 Y. CARO, A. HANSBERG and A. MONTEJANO

graphs, which we call balanceable graphs, and in graphs G that are r-tonal for every
0 ≤ r ≤ e(G), which we call omnitonal graphs. The study of these graph families
led us to its characterization via a completely analogous theorem to Theorem 2.2 or
2.3 but without the ε-balanced coloring. Our proof relies on the classical Ramsey
Theorem [9] as well as on the well-known Kővari-Sós-Turán theorem [8] that yields
an o(n2)-bound on the extremal number for bipartite graphs and, particularly,

(1) ex(n,Kt,t) = O(n2−1/t),

where ex(n,G) stands for the extremal number of G, that is, the maximum number
of edges in a graph with n vertices containing no copy of G. The Kővari-Sós-Turán
theorem yields also

(2) z(n, t) = O(n2−1/t),

where z(n, t) is the Zarankiewicz number, that is, the maximum number of edges
in a bipartite graph with n vertices in each part, containing no copy of Kt,t.

Theorem 3.1 ([2]). Let k be a positive even integer. Then there are positive

integers N := N(k), m = m(k) and ϕ(n, k) = O(n2− 1
m ) such that, for every

n ≥ N , every 2-edge-coloring of Kn with at least ϕ(n, k) edges from each color
contains a type-A or a type-B colored copy of Kk.

Proof. (Sketch) Let q be an integer large enough to satisfy z(2q, k/2) ≤ 2q2.
This is possible because of (2). Let m = R(q) and define

ϕ(n, k) = ex(n,Km,m) + m(m− 1) + 2m(n− 2m) + 1.

Take an n large enough to fulfill 2ϕ(n, k) ≤
(
n
2

)
. This is possible because of (1).

By the definition of the extremal number ex(n,Km,m), there is a blue and a red
Km,m. By the definition of m and the Ramsey number R(q), in each partition
set of the blue and the red Km,m, there is a monochromatic Kq. Analyzing the
different possibilities of combinations of red and/or blue Kq’s, one obtains either
a type-A-colored K2q or a type-B-colored K2q, in which case we finish easily, or
we get a blue and a red colored K2q. Considering, in the latter case, the edges
that share these vertex disjoint red and blue cliques, we can finish by means of the
Zarankiewicz number z(2q, k/2). �

As in the ε-balanced case, Theorem 3.1 yields a characterization of r-tonal
graphs. Namely, setting n(G) = k, if n ≥ N(k) and the colored copy of G can
be found as a colored-consistent subgraph of both, a type-A-colored Kk and a
type-B-colored Kk, then it will be contained in every 2-edge-coloring of Kn with
at least ϕ(n, k) edges from each color. If this is not the case, then there will be
infinitely many n’s for which there is a 1

2 -balanced type-A-coloring of Kn or a
type-B-coloring of Kn [3] that will not contain a color-consistent copy of G. More
precisely, we have the following characterization.

Corollary 3.2 ([2]). Let G be a graph and let r be an integer with 0 < r ≤
be(G)/2c. Then G is r-tonal if and only if G has both a partition V (G) = X ∪ Y
and a set of vertices W ⊆ V (G) such that e(X,Y ), e(G[W ]) ∈ {r, e(G)− r}.



RECENT DEVELOPMENTS ON UNAVOIDABLE PATTERNS 531

From this corollary, the following characterizations of balanceable graphs and
omnitonal graphs can be derived.

Corollary 3.3 ([2]). A graph G is balanceable if and only if G has both a parti-
tion V (G) = X ∪Y and a set of vertices W ⊆ V (G) such that e(X,Y ), e(G[W ]) ∈
{b 12e(G)c, d 12e(G)e}.

Corollary 3.4 ([2]). A graph G is omnitonal if and only if, for every integer
r with 0 ≤ r ≤ e(G), G has both a partition V (G) = X ∪ Y and a set of vertices
W ⊆ V (G) such that e(X,Y ) = e(G[W ]) = r.

4. Implications

Theorem 3.1 leads to two major questions concerning Ramsey and Turán-type
problems. Given a graph G, we are interested in determining both, the minimum
number N = N(r,G) and, if the latter exists, the maximum number ϕ(n,G) such
that, if n ≥ N , every 2-edge coloring of Kn with at least ϕ(n,G) edges from each
color contains an (r, e(G) − r)-copy of G. In [3, 4, 2] we concentrated on the
determination of certain families of balanceable graphs (i.e., the case r = e(G)/2)
and in [2] also of omnitonal graphs and we have determined the corresponding
extremal number and many times, if not the precise number, we have a good
estimate of the corresponding Ramsey number, too. The families which were
studied include trees, stars, paths and complete graphs.
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