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THE ASYMPTOTICS OF REFLECTABLE WEIGHTED WALKS

IN ARBITRARY DIMENSION

M. MISHNA and S. SIMON

Abstract. We consider the weighted lattice walks with a reflectable step set re-

stricted to the positive d-dimensional orthant. We obtain asymptotic formulas for

the number of such walks as a function of the weights. To do so, we set up the
desired generating function as the diagonal of a rational function. Then we perform

a coefficient extraction via an integral computation which is broken up into two

cases. One part uses the residue theorem to evaluate the integral within an error,
while the other uses known approximations of Fourier-Laplace integrals.

1. Introduction

Lattice walks can model a wide variety of phenomena, yet are simple intuitive ob-
jects. We consider combinatorial classes of lattice walks restricted to remain in the
positive orthant (Nd). Each model is defined by a set of vectors S ⊆ {−1, 0, 1}d
called a stepset. A walk of length n in the class is a sequence of steps Z =
(Z1, . . . , Zn) with Zi ∈ S. We view the sequence as incremental moves starting
from the origin. Here we focus on stepsets which are reflectable, that is, the step
set is invariant under reflection across any axis. We require the stepset to define
genuinely d-dimensional walks, in the sense that for any dimension there is at
least one step that moves in that dimension. The main result (Theorem 2) is a
general asymptotic formula which to enumerate weighted walks. The formula is
parameterized by the values of the weights.

Reflectable lattice models appear in the literature in the study of walks in Weyl
chambers. Several authors have developed formulas for generating functions [15, 8]
and also enumeration formulas in some cases [9, 7]. Our work resembles the
analytic approach of Melczer and Mishna [12] and Melczer and Wilson [13], and
the formulas are similarly general, and simply stated. The case where all weights
are 1 was considered by Melczer and Mishna, and our formulas agree. The drift
of a model is the vector sum of the stepset: δS :=

∑
σ∈S σ. By the work of

Duraj [6], for the walks considered here, when this vector is in the negative orthant
Zd<0, the exponential growth factor and the critical exponent should agree with
those found for the excursions of the unweighted model. We show how to prove
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this property in the concluding remarks. The excursion enumeration formulas
of Denisov and Wachtel [5] agree with ours for the known 2D and 3D cases [3,
1]. In two and three dimensions, there are several approaches for asymptotic
enumeration of lattice models which pass through differential equations, see [2] and
the references therein. Differential equation approaches become computationally
infeasible in higher dimensions, and present theory does not permit treatment of
dimension as a symbolic parameter.

Here, the stepset is weighted using central weights. The weighting could indi-
cate multiple steps in a given direction or probabilities. Courtiel et al. [4] showed
that the (univariate) ordinary generating function for weighted walks with a cen-
tral weighting could be obtained as an evaluation of the (multivariate) generating
function for unweighted walks considering endpoints. Consequently, we phrase our
results in terms of evaluations of the generating function for unweighted walks. We
could view this as weighting directions, rather than steps. Other weightings are
possible and is work in progress.

1.1. Main result and organization of the extended abstract

We use the following notation. We denote vectors by boldface: x := (x1, . . . , xd)
and extend operations component-wise when it makes sense:

xα := (x1α1, . . . , xdαd), xα := (xα1
1 , . . . , xαd

d )

x−1 := (x−11 , . . . , x−1d ), eθ := (eθ1 , . . . , eθd).

Suppose that Q is a class of lattice walks. We define the complete gener-
ating function associated to the model as the formal power series Q(x; t) :=∑
ι∈Zd

≥0
,n≥0 q(ι;n)xιtn, where q(ι;n) is the number of (unweighted) walks of length

n that start at the origin end at the point ι.

Proposition 1. Let S be any stepset and let Q(x; t) be its associated complete
generating function. For any centrally weighted model, there exits a weight-vector
α of positive real numbers, and a positive real constant β such that the quantity
qα(n) defined as the weighted sum of all walks of length n is equal to

qα(n) = [tn]Q(α;βt).

We define a weighted walk directly using the weight vector α and we assume
β = 1. When β 6= 1, it suffices to rescale our enumeration results by multiplying
the formula by βn.

Let α = (α1, . . . , αd) be a vector of positive real numbers. The weight of a walk
ending at ι ∈ Zd≥0 is the value

∏
αιii . Remark that this is equivalent to weighting

a step σ in S by
∏
i=1..d α

σi
i and taking the weight of a walk to be the product of

the weights of the steps.
Our main result is the following enumeration formula for weighted reflectable

walks in arbitrary dimension.

Theorem 2. Fix the dimension d ≥ 1. Let S ⊂ {−1, 0, 1}d be a nontrivial
reflectable stepset defining a lattice model of walks such that each walk starts at
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the origin and remains in the first orthant Zd≥0. Let α = (α1, . . . , αd) be a vector

of positive weights, and let qα(n) := [tn]Q(α; t) be the weighted sum of all walks of
length n as defined above. Asymptotically, as n tends to infinity,

qα(n) ∼ γ · S(α+)n · n−(r/2)−m,

where S(x) =
∑

σ∈S x
σ, is the stepset inventory Laurent polynomial; α+

i =
max{αi, 1} for all i; m is the number of αi strictly less than 1 and r is the number
of αi less than or equal to 1, and γ is a constant.

The constant factor of a critical point is the product of the each of the factors
c(x̃j), given below. In cases where multiple critical points contribute, the constant
term γ can depend on the parity of n. Some contributing points have an expo-
nential growth of (−S(α+))n, so the corresponding constants are added when n is
even, and subtracted when n is odd. For a given contributing critical point with
component x̃j and step set with Pj steps in the positive j direction, the constant
term is calculated as:

c(x̃j) =


1− 1

α2
j

αj > 1

1√
2·π · (2Pj)

−1/2 ·
√
S(α+) · 2 αj = 1

1√
2·π · (2Pj)

−3/2 · (S(α+))3/2 · 2
(1−αj)2

αj < 1, x̃j = αj
1√
2·π · (2Pj)

−3/2 · (S(α+))3/2 · 2
(1+αj)2

αj < 1, x̃j = −αj

.

The proof uses a description of the generating function as a diagonal of a rational
function and applies techniques of analytic combinatorics in several variables. The
computation first treats dimensions where the weight is greater than one, and then
the weights less than or equal to one. The former are estimated using univariate
resides and the latter by an appeal to the substantial theorems.

Example 3 (The simple walks). Consider the three dimensional simple walks,
where the step set is the set of elementary vectors, and their negatives:

S = {±(1, 0, 0),±(0, 1, 0),±(0, 0, 1)}.
The following integer weighting of the steps is central:

Step (1, 0, 0) (−1, 0, 0) (0, 1, 0) (0, 1, 0) (0, 0, 1) (0, 0, 1)
Weight 8 2 4 4 1 16

The associated weight vector is: α = (2, 1, 1/4) with β = 4, hence r = 2, m = 1
in Theorem 2. Then as S(x, y, z) = x + 1/x + y + 1/y + z + 1/z, we determine
that the number of walks of length n has exponential growth β · S(2, 1, 1) = 26
and subexponential growth n−2/2−1 = n−2. The associated constant factor is 169

6π .

2. Proof of Theorem 2

Melczer and Mishna outline the strategy of their study of the unweighted case,
and the set up here is similar. However, it differs in that we use the two stage
evaluation of the integral following the strategy of Courtiel et al. The main steps
are as follows:
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1. Set up the desired generating function as a diagonal of a rational function;
2. Determine the minimal critical points of the rational function;
3. Write the coefficient as an iterated Cauchy integral;
4. Estimate Cauchy integral by a sum of residues indexed by critical points.

The final step requires potentially intense computations. However, the reflectabil-
ity of the step set means that the inventory polynomial has a particular form
(see Eq. (3)), which significantly simplifies this computation, and allows us to say
general things.

The following form of the generating function is developed already in [12], and
the required to give the weighted version which is simply an evaluation follows
Chyzak et al. [2]. Here, ∆ is the diagonal operator:

∆
∑
n

f(n1, n2, . . . , nd, nd+1)xn1
1 xn2

2 · · ·x
nd

d tnd+1 :=
∑
n≥0

f(n, n, . . . , n)tn

which is known to be well defined as applied to these functions, as they are all
roughly geometric series.

Proposition 4. The generating function for weighted walks satisfies:

(1)

∑
n≥0

qα(n)tn = ∆
( G(x)

H(x, t)

)
= ∆

∏d
k=1 α

−2
k (α2

k − x2k)

1− t(x1 · · ·xd)S(α · x−1)
· 1

(1− x1) · · · (1− xd)
.

We identify G(x) and H(x; t) as the numerator and denominator of Equation (1)
respectively.

The first step is to determine the singular points of G(x)
H(x;t) which contribute to

the dominant asymptotic growth. In this case, it is sufficient to find those solutions
ρ∗ to a particular set of equations, known as the critical point equations, which
minimize the value |ρ1 . . . ρd+1|−1. The first critical point equation is H(x; t) = 0.
From this we deduce t = 1

x1...xd
S(αx−1), since there is only one factor in which

t appears. We also see that if x∗ is in the closure of the domain of convergence,
each component must satisfy |x∗i | ≤ 1 for 1 ≤ i ≤ d.

The critical points are also solutions to the following equations:

(2) x1
∂H(x; t)

∂x1
= · · · = xd

∂H(x; t)

∂xd
= t

∂H(x; t)

∂t
.

The symmetry of the stepset gives S(x; t) a particular form, which allows us to
solve these explicitly. For each k we have:

(3) S(αx−1) =
(αk
xk

+
xk
αk

)
Pk(x) +Qk(x)

where Pk and Qk contain no xk. Using this form we see that the equation

xk
∂H(x;t)
∂xk

= t∂H(x;t)
∂t is equivalent to:

(4) 0 = tx1 . . . xd ·
1

αk
· (x2k − α2

k) · Pk(x).
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The solution to (4) occurs when either xk = ±αk or Pk = 0. The latter possibility
is dismissed since it implies that the model has no step in the k-th dimension,
contradicting the nontriviality hypothesis.

Proposition 5. The point x∗ = (α−, tα−), where α− := (α−1 , . . . , α
−
d ) where

α−k = min{1, αk} and tα− := 1
α−

1 ...α
−
d S(α+)

is a finitely minimal point of G(x)
H(x;t) .

The proof is straightforward analysis of the related critical point equations.
When there are small weights, we must also consider the contribution from

points x̃, identical to x∗ except where components corresponding to small weights
are negated. If |S(αx̃)| = |S(αx∗)|, then we consider its contribution. The results
stated above take these additional critical points into account, but for brevity we
present how to compute the contribution from the critical point in Rd>0. The com-
putation and analysis for the remaining critical points with negative components
is similar.

Critical points contribute to the dominant asymptotics. In general, if z∗ is
the unique minimal critical point for F (z), then asymptotically the exponential
growth for the coefficients of the diagonal series ∆F (z) is |z∗1 . . . z∗d |. From Proposi-

tion 5, we can conclude that the exponential growth of qα(n) is limn→∞ qα(n)1/n =∣∣α−1 . . . α−d tα−
∣∣ = S(α+).

In order to determine the subexponential growth of qα(n), we express it as an
iterated Cauchy integral. We simplify the integral in two stages: first to account
for weights greater than 1, and then the weights less than or equal to 1. In order
to simplify the presentation, we assume that the weights are in ascending order
(reordering the dimensions if necessary). Thus, by the hypotheses, α1 ≤ · · · ≤
αm < 1, αm+1 = · · · = αr = 1 and 1 < αr+1 ≤ · · · ≤ αd. We have

qα(n) = [xn1 ][xn2 ] · · · [xnd ][tn]

( ∏d
k=1 α

2
k(α2

k − x2k)

(1− tx1 . . . xdS(αx−1))
∏d
k=1(1− xk)

)
(5)

= [x01][x02] · · · [x0d]

(
S(αx−1)n

d∏
k=1

α2
k − x2k

α2
k (1− xk)

)
(6)

Then we use the multi-dimensional Cauchy Integral Formula to write this as an
integral over a ball centered at the origin, avoiding neighborhoods of the critical
points,

=
1

(2π i)d

∫
S(αx−1)n

d∏
k=1

α2
k − x2k

α2
kxk (1− xk)︸ ︷︷ ︸

I(x)

dxd · · · dx1.

Using the theory of smooth point asymptotics, we apply [14, Equation 8.6.2] to
express the asymptotics as

qα(n) =
∑
x̃

Φx̃(n).
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The process for determining Φx̃(n) is the same for each critical x̃, so we continue
the analysis on the unique positive critical point.

2.1. Large weights

For each dimension in which the weight is more than 1, we can estimate the integral
with a residue computation with a controlled error term. In this abstract we will
show how to treat the innermost integral, and then repeat this process for all of
the dimensions where the weight is greater than 1. This process will result in an
expression with r integrals remaining.

In order to estimate the integrals in variables with large weights, we use a
residue computation which differs from the original integral by a small enough
error term. We sketch how to do this for one variable, xd, but we can iterate the
argument for each variable with large weights. (Or, skip this entirely if d = r.)

We can show the integral of I(x) over |xd| = 1 + ε has exponential growth
strictly less that S(α+) using some elementary bounds. Therefore, we know that
for some constants K > 0, and Mε < S(α+),

(7)

∣∣∣∣∣
∫
. . .

∫ ∫
|xd|=1+ε

I(x) dxd · · · dx1

∣∣∣∣∣ ≤ KMn
ε .

Therefore we can subtract off this integral and add an error term of O(Mn
ε ), so

that we can use the residue theorem inside the region 1 − ε ≤ |x1| ≤ 1 + ε. The
only pole is the region is a simple pole is at xd = 1. Thus, the innermost integral
evaluates to 2π i (xd − 1)I(x) evaluated at xd = 1. Thus,

qα(n) =
(α2
d − 1)

α2
d(2π i)d−1

·
∫
. . .

∫
S

(
α1

x1
, . . . ,

αd−1
xd−1

, αd

)nd−1∏
k=1

α2
k − x2k

α2
kxk (1− xk)

dxd−1. . .dx1+O(Mn
ε ).

In short, we see that the dimensions with large weights don’t contribute to the
subexponential growth.

2.2. Small weights

After processing the large weights we have:

qα(n) =

∏d
k=r(α

k
d − 1)α−2k

(2π i)r

·
∫
. . .

∫
S

(
α1

x1
, . . . ,

αr
xr
, αr+1, . . . , αd

)n r∏
k=1

α2
k − x2k

α2
kxk (1− xk)

dxr · · · dx1 +O(Mn
ε ).

To give exact estimates, we appeal directly to the following theorem of Hörmander
[10, Theorem 7.7.5], rephrased by Pemantle and Wilson [14, Theorem 13.3.2].

Theorem 6 (Hörmander; Pemantle and Wilson). Suppose that the functions
A(θ) and φ(θ) in d variables are smooth in a neighbourhood N of the origin and
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that φ has a critical point at θ = 0; the Hessian H of φ at 0 is non-singular;
φ(0) = 0; and the real part of φ(θ) is non-negative on N .

Then for any integer M > 0 there are constants C0, · · ·CM such that

(8)

∫
N
A(θ) e−nφ(θ) dθ =

(
2π

n

)d/2
det (H)

−1/2 ·
M∑
j=0

Cjn
−j +O(n−M−1).

The constants Cj are given by the formula:

(9) Cj = (−1)j
∑
`≤2j

D`+j(Aφ`)(0)

2`+j`!(`+ j)!
, with φ := φ− 〈θ,Hθ〉

where D is the differential operator D := 〈∇,H−1∇〉 =
∑
a,b(H−1)a,b

∂
∂θa

∂
∂θb

.

In order to apply this theorem, we first perform a change of variables with the
desired critical point centered at the origin. Thus we get a Fourier-Laplace integral
with

(10) A(θ) :=

m∏
k=1

(
1− e2 i θk

)
(1− αk ei θk)

r∏
k=m+1

(
1 + ei θk

)
, and

(11)

φ(θ) := ln
(
S(α+)

)
− ln

(
S

(
α1

ei θ1
, · · · , αm

ei θm
,

1

ei θm+1
, · · · , 1

ei θr
, αr+1, . . . , αd

))
.

In order to prove the formula for sub-exponential growth, we must determine the
first non-zero value of Cj in the equation above. The following lemma shows the

subexponential growth is n−r/2−m as claimed in Theorem 2.

Lemma 6.1. For weights α1, · · · , αm < 1, αm+1 = · · · = αr = 1, and A, φ,
as defined above, the first j such that Cj in Eq. (9) is nonzero is m, and the only
nonzero term in the sum for Cm is ` = 0.

The proof is mainly computations of derivatives, which is simplified due to the
symmetry of the stepset. Combining this lemma with Theorem 6, we calculate
that the contribution from a given critical point is

Φx̃(n) ∼
( d∏
j=1

c(x̃j)

)
· S(α+)n · n−(r/2)−m.

3. General observations and future work

Under the same hypotheses as the main theorem, we can give similar formulas for
the number of walks in the positive orthant which end on k axes. In particular,
the number of excursions in the positive orthant with steps from S of length n
grows as S(1)nn−3d/2. We also note that setting the weights to 1 gives the same
asymptotics in the unweighted case given by Theorem 71 of Melczer [11].

A similar approach should work to determine general asymptotic formulas for
weighted versions of the nearly symmetric walks recently investigated by Melczer
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and Wilson. More generally, this approach will work for other Weyl groups. This
is work in progress. Following [4], one can adapt this to consider arbitrary starting
points. As in that case, the dominant constant term is then parametrized by the
starting point and turns out to be a discrete harmonic function.
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