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MORE NON-BIPARTITE FORCING PAIRS

T. HUBAI, D. KRÁL’, O. PARCZYK and Y. PERSON

Abstract. We study pairs of graphs (H1, H2) such that every graph with the

densities of H1 and H2 close to the densities of H1 and H2 in a random graph is

quasirandom; such pairs (H1, H2) are called forcing. Non-bipartite forcing pairs
were first discovered by Conlon, Hàn, Person and Schacht [Weak quasi-randomness

for uniform hypergraphs, Random Structures Algorithms 40 (2012), no. 1, 1–38]:
they showed that (Kt, F ) is forcing where F is the graph that arises from Kt by

iteratively doubling its vertices and edges in a prescribed way t times. Reiher and

Schacht [Forcing quasirandomness with triangles, Forum of Mathematics, Sigma.
Vol. 7, 2019] strengthened this result for t = 3 by proving that two doublings suffice

and asked for the minimum number of doublings needed for t > 3. We show that

d(t + 1)/2e doublings always suffice.

1. Introduction and results

The systematic study of quasirandom graphs has been initiated by Thomason [14,
15] and Chung, Graham and Wilson [1] in the 1980’s. Since then, many properties
of quasirandom graphs were described. We refer to the surveys [6, 7].

A key property of a quasirandom graph is an almost uniform edge distribution.

A sequence (Gn)n∈N of graphs is p-quasirandom if eGn(U) = p
(|U |

2

)
+ o(|Gn|2) for

all subsets U ⊆ V (Gn), where |Gn| is the number of vertices of Gn and eGn
(U)

is the number of edges of Gn with both end vertices in U . A particular graph

G with n vertices is (ε, p)-quasirandom if
∣∣∣eG(U)− p

(|U |
2

)∣∣∣ ≤ εn2 for all subsets

U ⊆ V (G).
One of many equivalent characterizations of p-quasirandom sequences (Gn)n∈N

of graphs is the following: (Gn)n∈N is quasirandom if and only if Gn has edge
density p and contains (p4+o(1))|Gn|4 labelled (non-induced) copies of C4. Equiv-
alently, Gn contains asymptotically the expected number of copies of K2 and C4

as the Erdős-Rényi random graph G(n, p). This leads to the definition of a forcing
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pair of graphs given below. To give the definition, we need to introduce the fol-
lowing notation. If F and G are two graphs, then t(F,G) is the number of graph
homomorphisms from F to G, i.e. all maps f : V (F ) → V (G) with f(e) ∈ E(G)
for all e ∈ E(F ). In addition, we write e(F ) for the number of edges of F .

Definition 1.1 (Forcing pairs). A pair (F1, F2) is called forcing if for every
p ∈ (0, 1] and ε > 0, there exists a δ > 0 such that the following holds. Every
graph G with

t(F1, G) = (1± δ)pe(F1) and t(F2, G) = (1± δ)pe(F2)

is (ε, p)-quasirandom.

In particular, the pair (K2, C4) is forcing. There are two exciting conjec-
tures related to forcing pairs: Sidorenko’s conjecture made independently by
Sidorenko [11] and by Erdős and Simonovits [12], and the so-called forcing conjec-
ture made by Skokan and Thoma [13]. While Sidorenko’s conjecture asks whether
the lower bound on t(F2, G) is always at least pe(F2) where p = t(K2, G), the forc-
ing conjecture states that any pair (K2, F ), where F is a bipartite graph containing
a cycle, is forcing. Due to their relation to Szemerédi’s regularity lemma, these
conjectures expedited tremendous amount of research in extremal combinatorics.
Thus, additional forcing pairs were studied in [1, 2, 3, 4, 5, 9, 13]. The first non-
bipartite forcing pairs were found by Conlon et al. in [3]. So far, all non-bipartite
forcing pairs are obtained by the construction described below.

Let F be a t-partite graph and V (F ) = V1(F )∪̇ . . . ∪̇Vt(F ) a fixed t-coloring of
F . The doubling T (F ) on V1(F ) is the graph obtained by taking two identical
disjoint copies F1 and F2 of F and identifying the corresponding vertices in V1(F1)
and V1(F2). In this way, we obtain a t-coloring of T (F ) given by the sets V1(F1) =
V1(F2), V2(F1)∪̇V2(F2), . . . , Vt(F1)∪̇Vt(F2). For k ≤ t, the k-fold doubling Tk(F )
is defined as the doubling T (F ) on V1(F ) for k = 1 and the doubling T (Tk−1(F ))
on Vk(Tk−1(F )) for k ≥ 2. The order of the doublings has no influence on Tk(F ),
i.e. we could permute V1(F ), . . . , Vk(F ) arbitrarily. Observe that T2(K2) = C4.

The pair (K2, C4) = (K2, T2(K2)) is forcing. The result from [3] states that the
pair (Kt, Tt(Kt)) is also forcing for any t ≥ 3. Hàn et al. [4] generalized this result
for any t-colorable graph F in a similar way. Reiher and Schacht [9] improved
the result from [3] for t = 3 by showing that the pair (K3, T2(K3)) is forcing. We
generalize this result for t > 3; we note that the same was independently proven
by Reiher and Schacht [10].

Theorem 1.2. The pair (Kt, Td(t+1)/2e(Kt)) is forcing for any t ≥ 2.

We will present the proof in the language of graph limits, which we now intro-
duce, since this makes the arguments particularly short and transparent. Let W
be a kernel, i.e. a bounded symmetric Lebesgue measurable function from [0, 1]2.
We write W ≡ p if W is equal to p almost everywhere; a kernel with W ≡ p is
called p-quasirandom. The homomorphism density extends in a natural way for a
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graph F and a kernel W :

t(F,W ) =

∫
[0,1]V (F )

∏
uv∈E(F )

W (xu, xv)
∏

u∈V (F )

dxu.

A graphon is a kernel W with values in [0, 1]. A pair of graphs (F1, F2) is called
forcing if for every real p ∈ (0, 1], every graphon W with t(F1,W ) = pe(F1) and
t(F2,W ) = pe(F2) is p-quasirandom. This definition, see [8, Chapter 16], coincides
with the definition of a forcing pair given earlier.

2. Proof of Theorem 1.2 for t = 4

In this section, we give a proof of Theorem 1.2 for K4. We need the following
lemma.

Lemma 2.1 (Lemma 10 from [3]). Let W be a graphon and p ∈ (0, 1] such that

t(K4,W ) = p6 and t(T3(K4),W ) = p48.

Then

W (x1, x2)W (x1, x3)W (x2, x3)

∫
[0,1]

W (x1, y)W (x2, y)W (x3, y)dy = p6

for almost all (x1, x2, x3) ∈ [0, 1]3. �

The proof of this lemma is given in [3] in the language of quasirandom (hy-
per)graphs, and we sketch the line of arguments here for completeness. It can
be proved by repeatedly applying Cauchy-Schwarz inequality starting to t(K4,W )
three times. This series of applications of Cauchy-Schwarz inequality yields that
t(T3(K4),W ) ≥ p48. Since it holds t(T3(K4),W ) = p48 by the assumption of the
lemma, it follows that for almost all values of (x1, x2, x3) ∈ [0, 1]3 one has

W (x1, x2)W (x1, x3)W (x2, x3)

∫
[0,1]

W (x1, y)W (x2, y)W (x3, y)dy = p6.

The next lemma together with Lemma 2.1 readily implies Theorem 1.2 for
k = 4.

Lemma 2.2. Let W be a graphon and p ∈ (0, 1]. If it holds that

W (x1, x2)W (x1, x3)W (x2, x3)

∫
[0,1]

W (x1, y)W (x2, y)W (x3, y)dy = p6(1)

for almost all (x1, x2, x3) ∈ [0, 1]3, then W is p-quasirandom.

Before presenting the proof, we recall the definition of the essential supre-
mum ess sup(f) of a (Lebesgue) measurable function f : Rn → R. It is the in-
fimum over all y ∈ R with f(x) ≤ y for almost all x ∈ Rn, i.e. ess sup(f) :=
inf {y : λ({f ≥ y}) = 0}, where λ is the Lebesgue measure. The essential infimum
of a function is defined analogously.
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Proof of Lemma 2.2. Let f : [0, 1]→ [0, 1] be defined as

f(x) = sup
y1,y2∈[0,1]

(W (x, y1)−W (x, y2)).

Observe that f is a measurable function and set c := ess sup f ∈ [0, 1]. If c = 0,
then W is p-quasirandom. Thus, we assume that c > 0.

The definition of f and c implies that there exist reals a, b ∈ R with c = b − a
satisfying the following. For any η > 0, there exist x1, x2, x3, x4 ∈ [0, 1] such that

(2)
W (x1, x2) ≥ b− η, W (x1, x3) ≥ b− η,
W (x2, x4) ≤ a+ η, W (x3, x4) ≤ a+ η,

and (1) holds for (x1, x2, x3) and (x2, x3, x4). In addition, we can assume that
a > 0, W (x2, x3) > 0, ess supy∈[0,1]W (x2, y)W (x3, y) > 0 (because p > 0), and
that

W (x1, y) ≥ a− η and W (x4, y) ≤ b+ η for almost all y ∈ [0, 1].(3)

We get from (1) that

W (x1, x2)W (x1, x3)W (x2, x3)

∫
[0,1]

W (x1, y)W (x2, y)W (x3, y)dy

= p6 = W (x2, x4)W (x3, x4)W (x2, x3)

∫
[0,1]

W (x4, y)W (x2, y)W (x3, y)dy

Using (2) and (3) we can lower bound the left hand side by

(b− η)2(a− η)W (x2, x3)

∫
[0,1]

W (x2, y)W (x3, y)dy

and similarly we can upper bound the right hand side by

(a+ η)2(b+ η)W (x2, x3)

∫
[0,1]

W (x2, y)W (x3, y)dy.

As W (x2, x3)
∫
[0,1]

W (x2, y)W (x3, y)dy is non-zero, we obtain that

(b− η)2(a− η) ≤ (a+ η)2(b+ η)

and then deduce that b ≤ a+ 10η(b/a). Together with the assumption that b > a
this implies that W (x, y) ∈ [p± 20η(b/a)] for almost all (x, y) ∈ [0, 1]2. Since this
holds for every η > 0, the lemma follows. �

3. Proof of Theorem 1.2 – general case

The proof of the general case is based on the same idea as used in the previous
section and follows from the next two lemmas. The first lemma can be proven by
repeated applications of the Cauchy-Schwarz inequality similarly to the proof of
Lemma 2.1.
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Lemma 3.1. Let W be a graphon, p ∈ (0, 1], t ≥ 3, and k := d(t+ 1)/2e such
that

t(Kt,W ) = pe(Kt) and t(Tk(Kt),W ) = pe(Tk(Kt)).

Then

pe(Kt) =

( ∏
1≤i<j≤k

W (xi, xj)

)

·
∫
[0,1]t−k

( ∏
1≤i<j≤t−k

W (yi, yj)

)( ∏
i∈[k],j∈[t−k]

W (xi, yj)

) ∏
i∈[t−k]

dyi.

for almost all (x1, . . . , xk) ∈ [0, 1]k.

Lemma 3.2. Let W be a graphon, p ∈ (0, 1], t ≥ 3, and k := d(t+ 1)/2e. If it
holds that
(4)

pe(Kt) =

( ∏
1≤i<j≤k

W (xi, xj)

)

·
∫
[0,1]t−k

( ∏
1≤i<j≤t−k

W (yi, yj)

)( ∏
i∈[k],j∈[t−k]

W (xi, yj)

) ∏
i∈[t−k]

dyi.

for almost all (x1, . . . , xk) ∈ [0, 1]k, then W is p-quasirandom.

Proof. Let f : [0, 1]→ [0, 1] be defined as

f(x) = sup
y1,y2∈[0,1]

(W (x, y1)−W (x, y2)).

Again, f is a measurable function and we set c := ess sup f ∈ [0, 1]. If c = 0,
then W is p-quasirandom. So, we assume that c > 0 and consider positive reals
a, b ∈ R with c = b − a such that the following holds. For any η > 0, there exist
x1, . . . , xk+1 ∈ [0, 1] such that

W (x1, xi) ≥ b− η and W (xk+1, xi) ≤ a+ η for all i = 2, . . . , k,(5)

for (x1, . . . , xk) and (x2, . . . , xk+1) equation (4) holds,

(6) W (x1, y),W (xk+1, y) ∈ [a− η, b+ η] for almost all y ∈ [0, 1],

and Q is non-zero, where

Q =

( ∏
2≤i<j≤k

W (xi, xj)

)

·
∫
[0,1]t−k

( ∏
1≤i<j≤t−k

W (yi, yj)

)( ∏
2≤i≤k,j∈[t−k]

W (xi, yj)

) ∏
i∈[t−k]

dyi.
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We get from (4) that( ∏
1≤i<j≤k

W (xi, xj)

)

·
∫
[0,1]t−k

( ∏
1≤i<j≤t−k

W (yi, yj)

)( ∏
1≤i≤k,j∈[t−k]

W (xi, yj)

) ∏
i∈[t−k]

dyi

= pe(Kt) =

( ∏
2≤i<j≤k+1

W (xi, xj)

)

·
∫
[0,1]t−k

( ∏
1≤i<j≤t−k

W (yi, yj)

)( ∏
2≤i≤k+1,j∈[t−k]

W (xi, yj)

) ∏
i∈[t−k]

dyi.

Using (5) and (6) we can lower bound the left hand side by

(b− η)k−1(a− η)t−kQ(7)

and similarly we can upper bound the right hand side by

(a+ η)k−1(b+ η)t−kQ.(8)

As Q is non-zero this gives

(b− η)k−1(a− η)t−k ≤ (a+ η)k−1(b+ η)t−k.

If t is even, we have k − 1 > t− k and we can finish the proof similar to the case
t = 4. If t is odd, i.e. k − 1 = t− k, a more refined argument is needed.

Since W is a graphon, the difference of (7) and (8) is at most 2tη. In particular,
the estimates used to derive (7) cannot be too wasteful and it follows that

W (x1, y) ≤ a+ 2tη and W (xk+1, y) ≥ b− 2tη for almost all y ∈ [0, 1].

Together with (6) we get

W (x1, y) ∈ [a± 2tη] and W (xk+1, y) ∈ [b± 2tη] for almost all y ∈ [0, 1].

It follows that b − a ≤ 2(t + 1)η and consequently W (x, y) ∈ [p ± 4(t + 1)η] for
almost all (x, y) ∈ [0, 1]2. �
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