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GROUP OF AUTOMORPHISMS PRESERVING COSETS

OF A CENTRAL CHARACTERISTIC SUBGROUP

AND RELATED RESULTS

R. G. GHUMDE and S. H. GHATE

Abstract. A concept of Subcentral automorphisms of a group G with respect to a
characteristic subgroup M of Z(G) along with relevant mathematical paraphernalia

is introduced. With the help of this a number of results on central automorphisms

have been generalized.

1. Introduction

Let G be a group. We shall denote the commutator, centre, group of automor-
phisms and group of inner automorphisms of G by G′, Z(G), Aut(G) and Inn(G),
respectively. Let exp(G) denote the exponent of G.

For any group H and abelian group K, let Hom(H,K) denote the group of all
homomorphisms from H to K. This is an abelian group with binary operation
fg(x) = f(x)g(x) for f, g ∈ Hom(H,K).

An automorphism α of G is called central if x−1α(x) ∈ Z(G) for all x ∈ G.
The set of all central automorphisms of G, which is here denoted by AutZ(G),
is a normal subgroup of Aut(G). Notice that AutZ(G) = CAut(G)(Inn(G)), the
centralizer of the subgroup Inn(G) in the group Aut(G). The elements of AutZ(G)
act trivially on G′.

There has been a number of results on the central automorphisms of a group.
M. J. Curran [2] proved: for any non-abelian finite group G, AutZZ(G) is iso-

morphic with Hom(G/G′Z(G), Z(G)), where AutZZ(G) is group of all those central
automorphisms which preserve the center Z(G) elementwise.

In [3], Franciosi et al. showed that: if Z(G) is torsion-free and Z(G)/G′∩Z(G)
is torsion, then AutZ(G) acts trivially on Z(G). It is an abelian and torsion-free
group. They further proved that AutZ(G) is trivial when Z(G) is torsion-free and
G/G′ is torsion. In [5], Jamali et al. proved that for a finite group G in which
Z(G) ≤ G′, AutZ(G) ∼= Hom(G/G′, Z(G)). They also proved that if G is a
purely non-abelian finite p-group of class two (p odd), then AutZ(G) is elementary
abelian if and only if Ω1(Z(G)) = φ(G), and exp(Z(G)) = p or exp(G/G′) = p,
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where φ(G) is Frattini subgroup of G and Ω1(Z(G)) = 〈x ∈ Z(G)|xp = 1〉. Note
that a group G is called purely non-abelian if it has no non trivial abelian direct
factor. Adney [1] proved: if a finite group G has no abelian direct factor, then
there is a one-one and onto map between AutZ(G) and Hom(G,Z(G)).

In this article, we generalize the above results to subcentral automorphisms.

2. Subcentral Automorphisms

Let M and N be two normal subgroups of G. By AutN (G), we mean the subgroup
of Aut(G) consisting of all automorphisms which induce identity on G/N . By

AutM (G), we mean the subgroup of Aut(G) consisting of all automorphisms which
restrict to the identity on M .

Let AutMN (G) = AutN (G) ∩ AutM (G). From now onwards, M will be a char-
acteristic central subgroup and elements of AutM (G) will be called subcentral
automorphisms of G (with respect to subcentral subgroup M). It can be seen that
AutM (G) is a normal subgroup of AutZ(G).

We further let

C∗ = {α ∈ AutM (G) : αβ = βα, for all β ∈ AutM (G)}.
Clearly C∗ is a normal subgroup of Aut(G). Since every inner automorphism
commutes with elements of AutZ(G), Inn(G) ≤ C∗. Let

P = 〈{[g, α] : g ∈ G,α ∈ C∗}〉, where [g, α] ≡ g−1α(g).

In the following, P and C∗ will always correspond to a central subgroup of M
of G as in the above definitions.

Following proposition shows that each element of P is invariant under the nat-
ural action of AutM (G).

Proposition 2.1. AutM (G) acts trivially on P .

Proof. Consider an automorphism α ∈ AutM (G). This implies x−1α(x) ∈ M
for all x ∈ G. So α(x) = xm for some m ∈ M . Let β ∈ C∗. By definition of C∗,
we have

α([x, β]) = α(x−1β(x)) = (α(x))−1β(α(x))

= m−1x−1β(xm) (∵ α ∈ AutM (G))

= m−1x−1β(x)m = x−1β(x) = [x, β], (∵ β ∈ C∗).
Hence the result follows. �

Let E∗ be any normal subgroup of Aut(G) contained in C∗, and K = 〈[g, α]|g ∈
G,α ∈ E∗〉.

In particular, when E∗ = Inn(G), we get K = G′. In the following, K represents
a subgroup of P which is obtained in the above manner for a corresponding E∗.
Since K is a subgroup of P , it is invariant under the action of AutM (G). It is easy
to see that K is a characteristic subgroup of G, and hence it is a normal subgroup
of G.

Our main results are given by the following theorems.
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Theorem A. For a finite group G, AutMM (G) ∼= Hom (G/KM,M).

Theorem B. Let G be a group with M torsion-free and M/M ∩ K torsion.
Then AutM (G) is a torsion-free abelian group which acts trivially on M .

Theorem C. If G is a purely non-abelian finite group, then |AutM (G)| =
|Hom(G,M)|.

Theorem D. If G is a purely non-abelian finite p-group (p odd), then AutM (G)
is an elementary abelian p-group if and only if exp(M) = p or exp(G/K) = p.

Theorem E. Let G be a non-abelian finitely generated group in which M is
indecomposable with both M and G/M torsion free abelian, then Hom(G,M) is a
torsion free abelian group.

Proof of Theorem A. For any µ ∈ AutMM (G), define the map

ψµ : Hom

(
G

KM
,M

)
→M as ψµ(gKM) = g−1µ(g).

We first show that ψµ is well defined. Let gKM = hKM , i.e., gh−1 ∈ KM .
Therefore,

µ(gh−1) = gh−1 =⇒ g−1µ(g) = h−1µ(h) =⇒ ψµ(gKM) = ψµ(hKM).

For proving ψµ is a homomorphism, consider

ψµ(gKMhKM) = ψµ(ghKM) = (gh)−1µ(gh) = h−1g−1µ(g)µ(h)

= g−1µ(g)h−1µ(h) = ψµ(gKM) · ψµ(hKM).

Now define a map ψ : AutMM (G)→ Hom
(
G
KM ,M

)
as ψ(µ) = ψµ. We show that

ψ is the required isomorphism. For f, g ∈ AutMM (G) and h ∈ G,

ψ(fg)(hKM) = ψfg(hKM) = h−1fg(h) = h−1f(hh−1g(h))

= h−1f(h)h−1g(h) = ψf (hKM)ψg(hKM) = ψf · ψg(hKM).

Hence ψ(fg) = ψ(f)ψ(g).
Consider ψ(µ1) = ψ(µ2), i.e, ψµ1

(gKM) = ψµ2
(gKM) for all g ∈ G. This

implies g−1µ1(g) = g−1µ2(g), so µ1 = µ2 as g is an arbitrary element of G. Thus
ψ is a monomorphism.

We next show that ψ is onto. For any τ ∈ Hom
(
G
KM ,M

)
, define a map

µ : G→ G as µ(g) = gτ(gKM) and g ∈ G. Now we show that µ ∈ AutMM (G). For
g1, g2 ∈ G,

µ(g1g2) = g1g2τ(g1g2KM) = g1τ(g1KM)g2τ(g2KM) = µ(g1)µ(g2).

Therefore, µ is a homomorphism on G.
Further, let µ(g) = 1. This implies

gτ(gKM) = 1 =⇒ τ(gKM) = g−1 =⇒ g−1 ∈M.

Therefore,

gKM = KM =⇒ τ(gKM) = 1 =⇒ g = 1.
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Hence µ is one-one.
As G is finite, µ must be onto. So µ ∈ Aut(G). Further, as g−1µ(g) =

g−1gτ(gKM) = τ(gKM) ∈M , so µ ∈ AutM (G). Also if g ∈M , then

µ(g) = g(τ(gKM)) = gτ(KM) = g.

Thus, µ ∈ AutMM (G) and ψ(µ) = τ . �

Hence the theorem follows.

Corollary 2.2. Let G be a finite group with M ≤ K, then AutM (G) ∼=
Hom(G/K,M).

Proof. Since M ≤ K G/KM = G/K. The result follows directly from Theo-
rem A and Proposition 2.1. �

Proof of Theorem B. Let α ∈ AutM (G). If x is an element of M , then by the
hypothesis, xn ∈M ∩K for some positive integer n. By Proposition 2.1, we have
xn = α(xn) = (α(x))n, and hence x−n(α(x))n = 1. Since x−1α(x) ∈ M ⊆ Z(G),
this implies (x−1α(x))n = 1. As M is torsion-free, this implies that x−1α(x) = 1,
i.e., α(x) = x. Therefore, AutM (G) acts trivially on M .

Let α, β ∈ AutM (G) and x ∈ G. So

αβ(x) = α(β(x)) = α(xx−1β(x)) = α(x)x−1β(x) = xx−1α(x)x−1β(x)

= β(x)x−1α(x) = β(x)β(x−1α(x)) = βα(x).

Thus, AutM (G) is an abelian group.
Now, consider α ∈ AutM (G) and suppose there exists k ∈ N such that αk = 1.

Since x−1α(x) ∈ M for all x ∈ G, there exists g ∈ M such that α(x) = xg.
Further, α2(x) = α(α(x)) = α(xg) = α(x)α(g) = xg2 (because α acts trivially on
M). Hence, by induction, αn(x) = xgn. But αk = 1 implies x = xgk, i.e, gk = 1.
As M is torsion-free, we must have g = 1. Thus α(x) = x for every x, i.e., α = 1.
Therefore, AutM (G) is torsion-free, and the theorem follows. �

Proposition 2.3. If G is a group in which M is torsion-free and G/K is
torsion, then AutM (G) = 1.

Proof. Let α ∈ AutM (G) and x ∈ G. Then by the assumption, xn ∈ K for
some n ∈ N . As α fixes K elementwise, we have (α(x))n = α(xn) = xn. So
x−n(α(x))n = 1. But α ∈ AutM (G), and hence x−1α(x) ∈ M ≤ Z(G). This
implies that (x−1α(x))n = 1. Since M torsion-free, it follows that x−1α(x) = 1,
i.e., α(x) = x, for all x ∈ G. So AutM (G) = 1. �

Proof of Theorem C. For f ∈ AutM (G), we let α(f) ≡ αf defined as α(f)(g) ≡
αf (g) = g−1f(g), g ∈ G. It can be shown that αf ∈ Hom(G,M). We thus have
α : AutM (G)→ Hom(G,M). One can easily see that α is injective.

It just remains to show that α is onto. For σ ∈ Hom(G,M), consider the map
f : G → G given by f(g) = gσ(g). f is an endomorphism and also g−1f(g) =
σ(g) ∈ M , which implies that f is a subcentral endomorphism of G, and hence f
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is a normal endomorphism, (i.e., f commutes with all inner automorphisms). So,
clearly Im(f) is a normal subgroup of G.

It is easy to see that fn is also normal endomorphism, and hence Im(fn) is a
normal subgroup of G for all n ≥ 1. Since G is a finite group, the two series

Ker f ≤ Ker f2 ≤ . . .
Im(f) ≥ Im(f2) ≥ . . .

will terminate.
So there exists k ∈ N such that

Ker fk = Ker fk+1 = . . . = A,

Im(fk) = Im(fk+1) = . . . = B.

Now, we prove that G = AB.
Let g ∈ G, fk(g) ∈ Im(fk) = Im(f2k), and so fk(g) = f2k(h) for some h ∈ G.

Therefore, fk(g) = fk(fk(h)). This implies fk(g−1)fk(g) = fk(g−1)fk(fk(h)).
Thus (fk(h))−1g ∈ Ker fk = A. Thus g ∈ AB, and hence G = AB.

Clearly A ∩ B = 〈1〉 and therefore, G = A × B. If f(g) = 1, then g−1σ(g) =
1. This implies Ker f ≤ M . Similarly, if f2(g) = 1, i.e., f(f(g)) = 1. Thus
f(g) ∈ Ker f ≤ M . Therefore, gσ(g) ∈ M implies g ∈ M . Hence Ker f2 ≤ M .
Repetition of this argument gives A ≡ Ker fk ≤ M ≤ Z(G). This implies A is
an abelian group. By assumption, G is purely non-abelian, and hence we must
have A ≡ Ker fk = 1. This further implies Ker f = 1, i.e., f is injective. So
G = B ≡ Im(fk) = Im(f). Thus f surjective. Hence, f ∈ AutM (G). From the
definition of α, it follows that α(f) = σ. Hence α is surjective. Therefore, α is the
required bijection. Hence the result follows. �

Proposition 2.4. Let G be a purely non-abelian finite group, then for each
α ∈ Hom(G,M) and each x ∈ K, we have α(x) = 1. Further Hom(G/K,M) ∼=
Hom(G,M).

Proof. Whenever G is a purely non-abelian group, then by Theorem C,
|AutM (G)| = |Hom(G,M)|. For every σ ∈ AutM (G), it follows that fσ : x →
x−1σ(x) is a homomorphism from G to M . Further the map σ → fσ is one-one,
and thus a bijection because |AutM (G)| = |Hom(G,M)|. So every homomor-
phism from G to M can be considered as an image of some element of AutM (G)
under this bijection. Let α ∈ Hom(G,M). Since K = {[g, α] : g ∈ G, α ∈ C∗},
a typical generator of K is given by g−1β(g) for an element g ∈ G, and β ∈
C∗. So α(g−1β(g)) = fσ(g−1β(g)) = (g−1β(g))−1σ(g−1β(g)). But by Proposi-
tion 2.1, σ(g−1β(g)) = g−1β(g) (because g−1β(g) ∈ K), and hence α(g−1β(g)) =
β−1(g)gg−1β(g) = 1. It follows that α(x) = 1 for every x ∈ K.

Now consider the map φ : Hom(G,M) → Hom(G/K,M) such that φ(f) = f̄ ,
where f̄(gK) = f(g) for all g ∈ G. Clearly this map φ is an isomorphism. �

Proposition 2.5. Let G be a purely non-abelian finite group, then |AutM (G)| =
|Hom(G/K,M)|.

Proof. Proof follows directly from Theorem C and Proposition 2.4. �
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Proposition 2.6. Let p be a prime number. If G is a purely non-abelian finite
p-group, then AutM (G) is a p-group.

Proof. By the assumption, the subgroup M , and hence Hom(G/M,M) are finite
p-groups. Hence the result follows directly from Proposition 2.5. �

Proposition 2.7. Let G be a purely non-abelian finite group.
(i) If gcd(|G/K|, |M |) = 1, then AutM (G) = 1.

(ii) If AutM (G) = 1, then M ≤ K.

Proof. (i) Follows from Proposition 2.5.
(ii) Let |G/K| = a and |M | = b. Since AutM (G) = 1, hence by Proposition 2.5,
(a, b) = 1. So there exist integers λ and µ such that λa + µb = 1. Let x ∈ M .
Thus xK = (xK)1 = (xK)λa+µb = (xK)λa(xK)µb = K, so x ∈ K. �

Remark 2.1. From Corollary 2.2 and Proposition 2.4, we can say that whenever
M ≤ K, AutM (G) ∼= Hom(G,M). Even when Im f ≤ K, for all f ∈ Hom(G,M),
this result holds. Thus, if G is a purely non-abelian finite group and if for all
f ∈ Hom(G,M), Im f ≤ K, then AutM (G) ∼= Hom(G/K,M).

Remark 2.2. For every f ∈ Hom(G,M), the map σf : x→ xf(x) is a subcentral
endomorphism of G. This endomorphism is an automorphism if and only if f(x) 6=
x−1 for all 1 6= x ∈ G (G is finite).

Adney and Yen [1] proved that the mapping

f(x) = x−1 for all 1 6= x ∈ G, and f ∈ Hom(G,Z(G))

does not exist for a purely non-abelian finite p-group. Hence, for a purely non-
abelian p-group, σf is an automorphism.

The following lemma was proved in [4]. We use it to prove Theorem D.

Lemma 2.8. Let x be an element of a finite p-group G and N a normal sub-
group of G containing G′ such that o(x) = o(xN) = p. If the cyclic subgroup
< x > is normal in G such that ht(xN) = 1, then 〈x〉 is a direct factor of G.

In the above statement, ht denotes height. Height of an element x of a p-groupG
is defined as the largest p-power pn such that x ∈ Gpn , whereGm = {gm : g ∈ G}.

Proof of Theorem D. For an odd prime p, let AutM (G) be an elementary abelian
p-group. Assume that the exponents of M and G/K are both strictly greater than
p. Since G/K is finite abelian, it has a cyclic direct summand 〈xK〉, say, of
order pn(n ≥ 2), and hence there exists L so that G/K ∼= 〈xK〉× L/K. For
f ∈ Hom(G,M), there exists an element a of order pm, where 2 ≤ m ≤ n such
that f(x) = a for any x ∈ G (From Remark 2.1, we can easily see that a 6= x−1).
So f̄(xK) = a.

We can use the homomorphism f̄ to get a corresponding homomorphism (also
denoted by the same notation) f̄ as f̄ : 〈xK〉 × L/K → M with (xiK, lK) → ai.
The map f̄ on 〈xK〉 × L/K is well defined since o(a)|o(xK) (as m ≤ n). If
aK = (xsK, lK), then we show that p|s. Assume p - s, then 〈xK〉 = 〈xsK〉, and
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hence G/K = 〈aK〉L/K. Now we have o(a) ≥ o(aK) ≥ o(xsK) = o(xK) ≥
o(f̄(xK)) = o(a). This implies that o(a) = o(aK). Thus 〈a〉 ∩ K = 1. As
o(aK) = o(xK), we get G/K ∼= 〈aK〉 × L/K, and hence G ∼= 〈a〉 × L. This is a
contradiction as G is a purely non-abelian group. Thus p|s.

By Remark 2.2 and Theorem C, σf ∈ AutM (G) and by assumption, o(σf ) = p.
Now, we have σf (x) = xf(x) = xa. Since f(a) = f̄((xK)s, lK) = as, we have

σ2
f (x) = xas+2 = xa

(s+1)2−1
s = xan2(s),

where nj(s) = (s+1)j−1
s for j ∈ N. Also, σ3

f (x) = xan3(s).

Generalizing this, we get σtf (x) = xant(s) for every t ∈ N.

As the order of σf is p, we have anp(s) = 1. Since p is odd and p|s, we have
p2|(np(s) − p). Therefore, qp2 + p = np(s) for some q ∈ Z. Thus (ap)qp+1 = 1.
But o(a) = pm implies o(ap) = pm−1. Now
(1) if ap 6= 1, then pm−1|(qp+ 1). But this is impossible as m ≥ 2.

(2) ap = 1 is also not possible as o(a) = pm and m ≥ 2.
So, the assumption that exp(M) and exp(G/M) are stricly greater than p is wrong.

Conversely, assume that exp(G/K) = p and f ∈ Hom(G,M). Then by proposi-
tion, f̄ ∈ Hom(G/K,M). So for x ∈ G, put f̄(xK) = a. If aK 6= 1, then it follows
that o(aK) = o(a) = p. Clearly 〈a〉 ≤ M ≤ Z(G), and hence the cyclic subgroup
〈a〉 is normal in G. We also have ht(aK) = 1. Now by the Lemma 2.8, the cyclic
subgroup 〈a〉 is an abelian direct factor of G, and this contradicts the assump-
tion. Therefore, a ∈ K. This implies that Im(f) ≤ K. Hence by Remark 2.1,
AutM (G) ∼= Hom(G/K,M). But as M is abelian, Hom(G/K,M) is abelian. Thus
AutM (G) is abelian. Since exp(G/K) = p, this implies that AutM (G) is an ele-
mentary abelian p-group.

Now assume that exp(M) = p. Consider f, g ∈ Hom(G,M). We first show
that g ◦ f(x) = 1 for all x ∈ G. Assume that f̄(xK) = b ∈ M for x ∈ G. Since
exp(M) = p, it implies that o(b)|p. If b = 1, then g ◦ f(x) = g(f̄(xK)) = 1.
Now take o(b) = p. If b ∈ K, then we have g(f(x)) = g(f̄(xK)) = g(b) = 1.
Assume b does not belong to K. As bp = 1, it follows that o(bK) = p. Also, as
b ∈ M ≤ Z(G), 〈b〉 is normal in G. Now if ht(bK) = 1, then by the Lemma 2.8,
the cyclic subgroup 〈b〉 is an abelian direct factor of G, giving a contradiction. So
assume ht(bk(G)) = pm for some m ∈ N. By the definition of height, there exists
an element yK in G/K such that bK = (yK)p

m

. But exp(M) = p. Therefore,
g ◦ f(x) = g(b) = ḡ(bK) = ḡ((yK)p

m

) = 1. Thus, for all f, g ∈ Hom(G,M) and
each x ∈ G, g(f(x)) = 1. We can similarly show that f(g(x)) = 1, and hence
f ◦ g = g ◦ f . From Remark 2.2, σf ◦ σg = σg ◦ σf . This shows that AutM (G) is
abelian.

Now we show that each non trivial element of AutM (G) has order p. So if
α ∈ AutM (G), then by Remark 2.2, there exists a homomorphism f ∈ Hom(G,M)
such that α = σf . Therefore, we have to show that o(σf )|p. Clearly, taking f = g
and using f(f(x)) = 1, x ∈ G, we have x ∈ G and σ2

f (x) = σf (xf(x)) = x(f(x))2.
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In general, for n ≥ 1, σnf (x) = x(f(x))n. As exp(M) = p and f(x) ∈ M , we have

σpf (x) = x which implies σpf = 1AutM (G).

Hence o(σf )|p. Thus, o(α)|p for all α ∈ AutM (G). Therefore, AutM (G) is an
elementary abelian group. �

Lemma 2.9. Let G be a non-abelian finitely generated group such that
G/M and M are torsion free abelian. Suppose that M is indecomposable and
f ∈Hom(G,M), then M ≤ Ker(f).

Proof. Since G/M and M are abelian, G′ ≤ M ∩Ker(f). Therefore, G/M ∩
Ker(f) is abelian.

The map σ : x(M ∩Ker(f))→ xM defines an epimorphism from G/M ∩Ker(f)
onto G/M.

Since G/M is a free abelian group, by [6, Theorem 4.2.4] there exists a homo-
morphism α : G/M → G/M ∩Ker(f) such that σ ◦ α is an identity on G/M .

Since Im(α) is a subgroup of G/M ∩ Ker(f), there exists a subgroup L of G
containing M ∩Ker(f) such that Im(α) = L/M ∩Ker(f). Because G/M ∩Ker(f)
is abelian, L/M ∩Ker(f) is a normal subgroup of G/M ∩Ker(f). So that L is a
normal subgroup of G.

Here G = ML . This follows from following arguments.
Here α is an injective homomorphism from G/M to G/M ∩Ker(f) and its image
is L/M ∩ Ker(f). This means, if we pull back L via inverse of α, then we get G.
But the inverse image is ML. Hence G = ML.

Also, M ∩ L = M ∩Ker(f) because σ ◦ α is an identity on G/M . Here L 6= 1,
otherwise G = M , and so G is abelian, which is a contradiction as G is non abelian.

From the fact that G is finitely generated, it follows that L/M ∩Ker f , and so
M/M ∩Ker(f) is a finitely generated abelian group.

Furthermore, M/M ∩Ker(f) is torsion free. Let t ∈M and k ∈ N be such that

(t(M ∩Ker(f)))k = 1.

Since M is torsion free, f(t) = 1, and so t ∈ Ker(f). Therefore, t ∈M ∩Ker(f).
This shows that M/M ∩ Ker(f) is free abelian. Hence by [6, Theorem 4.2.5],
M=(M∩Ker(f))×A for some A≤M . Since M is indecomposable, M∩Ker (f) = 1
or A = 1.

If M ∩Ker(f) = 1, then G′ = 1, and so G is abelian. This is a contradiction.
Therefore, we must have A = 1, and this means M = M ∩Ker(f). Thus, M is

contained in Ker(f) as desired. �

Proof of Theorem E. Let f ∈ Hom(G,M). Consider a map σf : G/M → M as
σf (x) = f(x). It defines a homomorphism from G/M to M .

Hence σf is well defined. This is because, for x1, x2 ∈ G, x1x
−1
2 ∈ M implies

f(x1x
−1
2 ) = 1 by Lemma 2.9, and this means f(x1) = f(x2). Clearly, σf is a

homomorphism. Thus, σf ∈ Hom(G/M,M).
Now, it is easy to see that the map f → σf is an isomorphism from Hom(G,M)

to Hom(G/M,M). Therefore,

Hom(G,M) ∼= Hom(G/M,M).



GROUP OF AUTOMORPHISMS PRESERVING COSETS 189

SinceG/M is a free abelian group, there exists n∈N such that G/M =Z×Z×. . .×Z︸ ︷︷ ︸
n times

.

Therefore,
Hom(G,M) w Hom(G/M,M)

w Hom(Z × Z × . . .× Z︸ ︷︷ ︸
n times

,M)

w Hom (Z,M)× . . .×Hom(Z,M)︸ ︷︷ ︸
n times

wM ×M × . . .×M︸ ︷︷ ︸
n times

by [6, Theorem 4.7 and 4.9].
Since M is a torsion-free abelian group, Hom(G,M) is a torsion free abelian

group. �
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