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GROUP OF AUTOMORPHISMS PRESERVING COSETS
OF A CENTRAL CHARACTERISTIC SUBGROUP
AND RELATED RESULTS

R. G. GHUMDE anD S. H. GHATE

ABSTRACT. A concept of Subcentral automorphisms of a group G with respect to a
characteristic subgroup M of Z(G) along with relevant mathematical paraphernalia
is introduced. With the help of this a number of results on central automorphisms
have been generalized.

1. INTRODUCTION

Let G be a group. We shall denote the commutator, centre, group of automor-
phisms and group of inner automorphisms of G by G’, Z(G), Aut(G) and Inn(G),
respectively. Let exp(G) denote the exponent of G.

For any group H and abelian group K, let Hom(H, K) denote the group of all
homomorphisms from H to K. This is an abelian group with binary operation
f9(x) = f(x)g(x) for f,g € Hom(H, K).

An automorphism « of G is called central if z7'a(z) € Z(G) for all z € G.
The set of all central automorphisms of G, which is here denoted by Autz(G),
is a normal subgroup of Aut(G). Notice that Autz(G) = Cauye)(Inn(G)), the
centralizer of the subgroup Inn(G) in the group Aut(G). The elements of Autz(G)
act trivially on G'.

There has been a number of results on the central automorphisms of a group.
M. J. Curran [2] proved: for any non-abelian finite group G, AutZ(G) is iso-
morphic with Hom(G/G'Z(G), Z(G)), where AutZ(G) is group of all those central
automorphisms which preserve the center Z(G) elementwise.

In [3], Franciosi et al. showed that: if Z(G) is torsion-free and Z(G)/G'NZ(G)
is torsion, then Autz(G) acts trivially on Z(G). It is an abelian and torsion-free
group. They further proved that Autz(G) is trivial when Z(G) is torsion-free and
G/G' is torsion. In [5], Jamali et al. proved that for a finite group G in which
Z(G) < G', Autz(G) 2 Hom(G/G',Z(G)). They also proved that if G is a
purely non-abelian finite p-group of class two (p odd), then Auty(G) is elementary
abelian if and only if Q1 (Z(G)) = ¢(G), and exp(Z(G)) = p or exp(G/G’) = p,
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where ¢(G) is Frattini subgroup of G and Q;(Z(G)) = (x € Z(G)|zP = 1). Note
that a group G is called purely non-abelian if it has no non trivial abelian direct
factor. Adney [1] proved: if a finite group G has no abelian direct factor, then
there is a one-one and onto map between Autz(G) and Hom(G, Z(G)).

In this article, we generalize the above results to subcentral automorphisms.

2. SUBCENTRAL AUTOMORPHISMS

Let M and N be two normal subgroups of G. By Auty (G), we mean the subgroup
of Aut(G) consisting of all automorphisms which induce identity on G/N. By
Aut™ (@), we mean the subgroup of Aut(G) consisting of all automorphisms which
restrict to the identity on M.

Let Auth (G) = Auty(G) N Aut™ (G). From now onwards, M will be a char-
acteristic central subgroup and elements of Auty/(G) will be called subcentral
automorphisms of G (with respect to subcentral subgroup M). It can be seen that
Aut s (G) is a normal subgroup of Autz(G).

We further let

C* = {a e Awt™(G) : aff = Ba, for all B € Auty(G)}.

Clearly C* is a normal subgroup of Aut(G). Since every inner automorphism
commutes with elements of Autz(G), Inn(G) < C*. Let

P={[g,a] : g € G,aeC*}), where [g,a] = g ' a(g).

In the following, P and C* will always correspond to a central subgroup of M
of G as in the above definitions.

Following proposition shows that each element of P is invariant under the nat-
ural action of Auty(G).

Proposition 2.1. Auty/(G) acts trivially on P.

Proof. Consider an automorphism « € Auty(G). This implies 2 ta(z) € M
for all z € G. So a(x) = xm for some m € M. Let 8 € C*. By definition of C*,
we have

a([z, B]) = a(z""B(x))

(a(x)~!Ba(z))

=m tz7 B(xm) (o€ Auty(Q))

= m s B(@)m = 27 B() = [2,8], (B e C).
Hence the result follows. O

Let E* be any normal subgroup of Aut(G) contained in C*, and K = ([g,a]|g €
G,a € EY).

In particular, when E* = Inn(G), we get K = G’. In the following, K represents
a subgroup of P which is obtained in the above manner for a corresponding E*.
Since K is a subgroup of P, it is invariant under the action of Auty;(G). It is easy
to see that K is a characteristic subgroup of GG, and hence it is a normal subgroup
of G.

Our main results are given by the following theorems.
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Theorem A. For a finite group G, Autih(G) = Hom (G/K M, M).

Theorem B. Let G be a group with M torsion-free and M/M N K torsion.
Then Auty (G) is a torsion-free abelian group which acts trivially on M.

Theorem C. If G is a purely non-abelian finite group, then | Auty (G)| =
| Hom(G, M)|.

Theorem D. If G is a purely non-abelian finite p-group (p odd), then Autys(QG)
is an elementary abelian p-group if and only if exp(M) = p or exp(G/K) = p.

Theorem E. Let G be a non-abelian finitely generated group in which M is
indecomposable with both M and G /M torsion free abelian, then Hom(G, M) is a
torsion free abelian group.

Proof of Theorem A. For any pu € Auth;(QG), define the map

1, : Hom (KC]TY\WM) —M as Y (gKM) = g u(g).

We first show that ¢, is well defined. Let gKM = hKM, ie., gh™' € KM.
Therefore,
plgh™") =gh™' = g7 'u(g) =h7'uh) = Pu(gKM) =, (hKM).
For proving 1,, is a homomorphism, consider
bu(gK MhEK M) =, (ghK M) = (gh) ™" u(gh) = h™ g~ u(g)pu(h)
=g ulg)h™ u(h) = Pu(gK M) - ¢, (REM).

Now define a map : Aut}}(G) — Hom (&7, M) as ¢(u) = 1b,. We show that
© is the required isomorphism. For f,g € Aut}s(G) and h € G,

(fg)(hKM) = ¢pg(hKM) = h~" fg(h) = h™" f(hh™'g(h))

=h7 f(h)h " g(h) = p(RKM)pg(RKM) = 5 - thy(RK M).

Hence ¢(fg) = ¢ (f)¥(9)-

Consider ¥(u1) = ¥(u2), ie, ¥u, (9KM) = 9,,(gKM) for all ¢ € G. This
implies ¢~ 'u1(g9) = g7 p2(g), so 1 = p2 as g is an arbitrary element of G. Thus

1) is a monomorphism.

We next show that 1 is onto. For any 7 € Hom (%,M), define a map
p: G — G as pu(g) = gr(gKM) and g € G. Now we show that u € Auty(G). For

91,92 S Ga
1(9192) = 91927(9192 K M) = g1 7 (1 K M ) go1 (92 KM ) = p(91)16(92)-

Therefore, p is a homomorphism on G.
Further, let p(g) = 1. This implies

gr(gKM)=1 = 7'(gKM):g_1 = gleM

Therefore,
gKM =KM = 71(gKM)=1 = g¢g=1.
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Hence p is one-one.
As G is finite, y must be onto. So pu € Aut(G). Further, as g~ 'u(g)
g tgr(gKM) = 7(9gKM) € M, so pu € Autp(G). Also if g € M, then

w(g) = g(r(gKM)) = g7(KM) = g.
Thus, x € Aut}?(G) and ¥(p) = 7. O

Hence the theorem follows.

Corollary 2.2. Let G be a finite group with M < K, then Auty(G) =
Hom(G/K, M).

Proof. Since M < K G/KM = G/K. The result follows directly from Theo-
rem A and Proposition 2.1. O

Proof of Theorem B. Let a € Autps(G). If x is an element of M, then by the
hypothesis, " € M N K for some positive integer n. By Proposition 2.1, we have
2" = a(z™) = (a(z))”, and hence 27" (a(x))™ = 1. Since x~ta(z) € M C Z(G),
this implies (7 'a(x))™ = 1. As M is torsion-free, this implies that x~'a(z) = 1,
i.e., a(x) = x. Therefore, Auty; (G) acts trivially on M.

Let o, 8 € Autp (G) and z € G. So

af(z) = a(B(x)) = a(zz'B(x)) = a(z)z ' B(z) = zz " a(z)z ™ B(x)
= B(x)z " a(z) = B(z)B(z~a(z)) = Pa(z).

Thus, Auty(G) is an abelian group.

Now, consider a € Auty;(G) and suppose there exists k € N such that o* = 1.
Since 2 ta(z) € M for all z € G, there exists g € M such that a(z) = zg.
Further, o?(z) = a(a(r)) = a(rg) = a(r)a(g) = vg? (because a acts trivially on
M). Hence, by induction, a”(x) = zg". But o = 1 implies z = zg", i.e, g* = 1.
As M is torsion-free, we must have g = 1. Thus a(z) = z for every z, i.e., @ = 1.
Therefore, Aut(G) is torsion-free, and the theorem follows. O

Proposition 2.3. If G is a group in which M is torsion-free and G/K 1is
torsion, then Autp(G) = 1.

Proof. Let o € Auty(G) and z € G. Then by the assumption, 2" € K for
some n € N. As « fixes K elementwise, we have (a(x))” = a(z™) = ™. So
7 "(a(x))” = 1. But a € Auty/(G), and hence x7la(z) € M < Z(G). This
implies that (z7'a(z))™ = 1. Since M torsion-free, it follows that z—ta(z) = 1,
ie, a(z) =z, for all z € G. So Auty (G) = 1. O

Proof of Theorem C. For f € Autp(G), we let a(f) = oy defined as a(f)(g) =
ar(g) =g 'f(g9),9 € G. It can be shown that ay € Hom(G, M). We thus have
a: Autp(G) — Hom(G, M). One can easily see that « is injective.

It just remains to show that « is onto. For ¢ € Hom(G, M), consider the map
f: G — G given by f(g9) = go(g). f is an endomorphism and also g~!f(g) =
o(g) € M, which implies that f is a subcentral endomorphism of G, and hence f
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is a normal endomorphism, (i.e., f commutes with all inner automorphisms). So,
clearly Im(f) is a normal subgroup of G.

It is easy to see that f™ is also normal endomorphism, and hence Im(f™) is a
normal subgroup of G for all n > 1. Since G is a finite group, the two series

Ker f <Kerf?<...
Im(f) > Im(f?) > ...

will terminate.
So there exists k € N such that

Ker f* = Ker f*t! = ... = 4,
Im(f*) =Im(f*) =... = B.

Now, we prove that G = AB.

Let g € G, f*(g) € Im(f*) = Im(f?*), and so f*(g) = f?*(h) for some h € G.
Therefore, f*(g) = f*(f*(h)). This implies f*(¢")f*(g) = f*(g~") fF(f*(h)).
Thus (f*(h))~'g € Ker f* = A. Thus g € AB, and hence G = AB.

Clearly AN B = (1) and therefore, G = A x B. If f(g) = 1, then g~o(g) =
1. This implies Ker f < M. Similarly, if f2(g9) = 1, i.e., f(f(g9)) = 1. Thus
f(g) € Ker f < M. Therefore, go(g) € M implies g € M. Hence Ker f2 < M.
Repetition of this argument gives A = Ker f* < M < Z(G). This implies A is
an abelian group. By assumption, G is purely non-abelian, and hence we must
have A = Ker f* = 1. This further implies Ker f = 1, i.e., f is injective. So
G = B = Im(f*) = Im(f). Thus f surjective. Hence, f € Auty/(G). From the
definition of «, it follows that a(f) = 0. Hence « is surjective. Therefore, « is the
required bijection. Hence the result follows. O

Proposition 2.4. Let G be a purely non-abelian finite group, then for each
a € Hom(G, M) and each x € K, we have a(x) = 1. Further Hom(G/K, M) =
Hom(G, M).

Proof. Whenever G is a purely non-abelian group, then by Theorem C,
| Autps (G)] = |Hom(G, M)|. For every o € Auty(G), it follows that f,: z —
x~to(z) is a homomorphism from G to M. Further the map o — f, is one-one,
and thus a bijection because | Auty/(G)| = |Hom(G, M)|. So every homomor-
phism from G to M can be considered as an image of some element of Autys(G)
under this bijection. Let o € Hom(G, M). Since K = {[g,a] : g € G, a € C*},
a typical generator of K is given by g~!3(g) for an element g € G, and 3 €
C*. So a(g7'B(9)) = fo(97'B(g9)) = (97B(g))'o(97'B(g)). But by Proposi-
tion 2.1, o(g~'B(g)) = g~ ' B(g) (because g~'B(g) € K), and hence a(g~'5(g)) =
B~H9)gg~'B(g) = 1. It follows that a(x) =1 for every z € K.

Now consider the map ¢: Hom(G, M) — Hom(G/K, M) such that ¢(f) = f,

O

where f(gK) = f(g) for all g € G. Clearly this map ¢ is an isomorphism.

Proposition 2.5. Let G be a purely non-abelian finite group, then | Auty (G)
| Hom(G/K, M)|.

Proof. Proof follows directly from Theorem C and Proposition 2.4. O
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Proposition 2.6. Let p be a prime number. If G is a purely non-abelian finite
p-group, then Auty (G) is a p-group.

Proof. By the assumption, the subgroup M, and hence Hom(G /M, M) are finite
p-groups. Hence the result follows directly from Proposition 2.5. (]

Proposition 2.7. Let G be a purely non-abelian finite group.
(i) If ged(|G/K|,|M]) = 1, then Aut™ (G) = 1.
(ii) If Autpy(G) =1, then M < K.

Proof. (i) Follows from Proposition 2.5.
(ii) Let |G/K| = a and |M| = b. Since Auty/(G) = 1, hence by Proposition 2.5,
(a,b) = 1. So there exist integers A and p such that Aa + pub = 1. Let € M.
Thus 7K = (zK)! = (zK)** T = (2 K)M (2 K)"* = K, s0 v € K. O

Remark 2.1. From Corollary 2.2 and Proposition 2.4, we can say that whenever
M < K, Autpy(G) 2 Hom(G, M). Even when Im f < K, for all f € Hom(G, M),
this result holds. Thus, if G is a purely non-abelian finite group and if for all
f € Hom(G, M), Im f < K, then Auty/(G) = Hom(G/K, M).

Remark 2.2. For every f € Hom(G, M), the map o:  — = f(z) is a subcentral
endomorphism of G. This endomorphism is an automorphism if and only if f(x) #
x7 ! forall 1 #£ 2 € G (G is finite).

Adney and Yen [1] proved that the mapping
f(x)=2"" forall 1 #2z €@, and f € Hom(G, Z(Q))

does not exist for a purely non-abelian finite p-group. Hence, for a purely non-
abelian p-group, o is an automorphism.
The following lemma was proved in [4]. We use it to prove Theorem D.

Lemma 2.8. Let x be an element of a finite p-group G and N a normal sub-
group of G containing G' such that o(x) = o(xN) = p. If the cyclic subgroup
< x> is normal in G such that ht(xN) = 1, then (x) is a direct factor of G.

In the above statement, ht denotes height. Height of an element z of a p-group G
is defined as the largest p-power p” such that 2 € GP", where G™ = {g™ : g € G}.

Proof of Theorem D. For an odd prime p, let Aut;(G) be an elementary abelian
p-group. Assume that the exponents of M and G/K are both strictly greater than
p. Since G/K is finite abelian, it has a cyclic direct summand (zK), say, of
order p™(n > 2), and hence there exists L so that G/K = (xK)x L/K. For
f € Hom(G, M), there exists an element a of order p™, where 2 < m < n such
that f(z) = a for any x € G (From Remark 2.1, we can easily see that a # z71).
So f(zK) = a.

We can use the homomorphism f to get a corresponding homomorphism (also
denoted by the same notation) f as f: (rK) x L/K — M with (2'K,lK) — a.
The map f on (rK) x L/K is well defined since o(a)lo(zK) (as m < n). If
aK = (2°K,lK), then we show that p|s. Assume p 1 s, then (zK) = (z°K), and
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hence G/K = (aK)L/K. Now we have o(a) > o(aK) > o(z°K) = o(zK) >
o(f(rK)) = o(a). This implies that o(a) = o(aK). Thus {a) N K = 1. As
o(aK) = o(zK), we get G/K = (aK) x L/K, and hence G = (a) x L. This is a
contradiction as G is a purely non-abelian group. Thus p|s.

By Remark 2.2 and Theorem C, oy € Auty(G) and by assumption, o(cf) = p.

Now, we have o;(z) = zf(z) = za. Since f(a) = f((zK)*, 1K) = a®, we have

UJ% (x) = xza®

12 (s+1)2-1

=xa - = za™®),

where n;(s) = % for j € N. Also, o}o’c(x) = za™ (),

Generalizing this, we get o (z) = za™®) for every t € N.
As the order of oy is p, we have a™(®) = 1. Since p is odd and p|s, we have
p?|(ny(s) — p). Therefore, gp® + p = n,(s) for some ¢ € Z. Thus (a?)?+ = 1.
But o(a) = p™ implies o(a?) = p™~1. Now
(1) if a? # 1, then p™ ! (gp + 1). But this is impossible as m > 2.
(2) a? =1 is also not possible as o(a) = p™ and m > 2.
So, the assumption that exp(M) and exp(G /M) are stricly greater than p is wrong.

Conversely, assume that exp(G/K) = p and f € Hom(G, M). Then by proposi-
tion, f € Hom(G/K, M). So for z € G, put f(zK) = a. If aK # 1, then it follows
that o(aK) = o(a) = p. Clearly (a) < M < Z(G), and hence the cyclic subgroup
(a) is normal in G. We also have ht(aK) = 1. Now by the Lemma 2.8, the cyclic
subgroup {(a) is an abelian direct factor of GG, and this contradicts the assump-
tion. Therefore, a € K. This implies that Im(f) < K. Hence by Remark 2.1,
Autp(G) 2 Hom(G/K, M). But as M is abelian, Hom(G/K, M) is abelian. Thus
Autpr(G) is abelian. Since exp(G/K) = p, this implies that Auty,(G) is an ele-
mentary abelian p-group.

Now assume that exp(M) = p. Cousider f,g € Hom(G, M). We first show
that go f(z) = 1 for all z € G. Assume that f(zK) =b € M for x € G. Since

exp(M) = p, it implies that o(b)|p. If b = 1, then go f(z) = g(f(zK)) = 1.
Now take o(b) = p. If b € K, then we have g(f(z)) = g(f(zK)) = g(b) = 1.
Assume b does not belong to K. As b? = 1, it follows that o(bK) = p. Also, as
be M < Z(G), (b) is normal in G. Now if ht(bK) = 1, then by the Lemma 2.8,
the cyclic subgroup (b) is an abelian direct factor of G, giving a contradiction. So
assume ht(bk(G)) = p™ for some m € N. By the definition of height, there exists
an element yK in G/K such that bK = (yK)P". But exp(M) = p. Therefore,
go f(x) = g(b) = g(bK) = g((yK)?") = 1. Thus, for all f,g € Hom(G, M) and
each © € G, g(f(x)) = 1. We can similarly show that f(g(x)) = 1, and hence
fog=go f. From Remark 2.2, 64 0 0, = 04 0 0¢. This shows that Auty/(G) is
abelian.

Now we show that each non trivial element of Auty/(G) has order p. So if
a € Autp(G), then by Remark 2.2, there exists a homomorphism f € Hom(G, M)
such that o = o¢. Therefore, we have to show that o(os)[p. Clearly, taking f =g
and using f(f(z)) =1,z € G, we have x € G and o}(z) = os(xf(x)) = z(f(x))*.
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In general, for n > 1, 0% (z) = (f(x))". As exp(M) = p and f(x) € M, we have
o’ () = z which implies 0% = 1aus,, (c)-

Hence o(of)|p. Thus, o(a)|p for all & € Auty/(G). Therefore, Auty(G) is an
elementary abelian group. O

Lemma 2.9. Let G be a non-abelian finitely generated group such that
G/M and M are torsion free abelian. Suppose that M is indecomposable and
fe€Hom(G, M), then M < Ker(f).

Proof. Since G/M and M are abelian, G’ < M N Ker(f). Therefore, G/M N
Ker(f) is abelian.

The map o: (M NXKer(f)) — =M defines an epimorphism from G/M NKer(f)
onto G/M.

Since G/M is a free abelian group, by [6, Theorem 4.2.4] there exists a homo-
morphism a: G/M — G/M N Ker(f) such that o o « is an identity on G/M.

Since Im(«) is a subgroup of G/M N Ker(f), there exists a subgroup L of G
containing M NKer(f) such that Im(«) = L/M NKer(f). Because G/M NKer(f)
is abelian, L/M NKer(f) is a normal subgroup of G/M N Ker(f). So that L is a
normal subgroup of G.

Here G = ML . This follows from following arguments.
Here « is an injective homomorphism from G/M to G/M NKer(f) and its image
is L/M NKer(f). This means, if we pull back L via inverse of «, then we get G.
But the inverse image is M L. Hence G = M L.

Also, M N L = M NKer(f) because o o « is an identity on G/M. Here L # 1,
otherwise G = M, and so G is abelian, which is a contradiction as G is non abelian.

From the fact that G is finitely generated, it follows that L/M NKer f, and so
M/M NKer(f) is a finitely generated abelian group.

Furthermore, M/M NXKer(f) is torsion free. Let t € M and k € N be such that

(¢(M N Ker(f))) = 1

Since M is torsion free, f(t) = 1, and so t € Ker(f). Therefore, t € M NKer(f).
This shows that M/M N Ker(f) is free abelian. Hence by [6, Theorem 4.2.5],
M =(MnKer(f))xA for some A<M. Since M is indecomposable, MNKer (f) =1
or A=1.

If M NKer(f) =1, then G’ =1, and so G is abelian. This is a contradiction.

Therefore, we must have A = 1, and this means M = M N Ker(f). Thus, M is
contained in Ker(f) as desired. O

Proof of Theorem E. Let f € Hom(G, M). Consider a map of: G/M — M as
or(x) = f(x). It defines a homomorphism from G/M to M.

Hence oy is well defined. This is because, for z1,22 € G, xlxgl € M implies
f(z1zy") = 1 by Lemma 2.9, and this means f(z;) = f(22). Clearly, oy is a
homomorphism. Thus, oy € Hom(G/M, M).

Now, it is easy to see that the map f — o is an isomorphism from Hom(G, M)
to Hom(G /M, M). Therefore,

Hom(G, M) =2 Hom(G/M, M).
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Since G /M is afree abelian group, there exists n € N such that G/M = ZxZx...X Z.
—_——

n times

Therefore,

Hom(G, M) = Hom(G/M, M)
cHom(Z X Z x...x Z,M)
—_———

n times

« Hom (Z, M) x ... x Hom(Z, M)

n times

M xMx...xM

n times

by [6, Theorem 4.7 and 4.9].

Since M is a torsion-free abelian group, Hom(G, M) is a torsion free abelian

group. O

5.

6.
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