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DEVIATION PROBABILITIES FOR ARITHMETIC

PROGRESSIONS AND OTHER REGULAR

DISCRETE STRUCTURES

G. FIZ PONTIVEROS, S. GRIFFITHS, M. SECCO and O. SERRA

Abstract. Let H be a k-uniform hypergraph on a vertex set V and Bm be a

uniformly sampled m-set from V . Set X to be the random variable given by the
number of edges induced by the set Bm. We provide tight upperbounds (up to a

constant in the exponent) for the tail distribution of X − E (X) for a wide range of

deviations, provided some near regularity conditions are satisfied by the hypergraph
H. In particular, the bounds may be applied to the setting of arithmetic progressions

and more generally to solutions of linear systems.

1. Introduction

Determining how well a random variable X is concentrated around its expectation
E [X] has a long history and is of great interest in many areas of mathematics.
There is today a plethora of methods to prove concentration of measure inequal-
ities but more often than not these general bounds are not optimal in specific
applications.

In probabilistic combinatorics, the random variables of interest are typically
counts of some fixed combinatorial objects in a random structure. Notable ex-
amples are subgraph counts in the Erdős-Rényi random graph model G(n, p) and
arithmetic progressions in a random set, i.e., given k ≥ 3, let X be the number of
arithmetic progressions of length k in [N ]p, the random subset of [N ] = {1, . . . , N}
where each element is included independently with probability p.

In the first instance, Janson, Oleszkiewicz and Ruciński [9] provided a moment-
based method that, for subgraph counts in random graphs, gives estimates for
P (X ≥ (1 + ε)E [X]) which are best possible up to logarithmic factors in the ex-
ponent. The problem of closing this gap remained open for several years, with
breakthroughs by Chatterjee, Chatterjee and Varadhan, Lubetzky and Zhao, and
DeMarco and Kahn for particular subgraph counts (see [5] for a detailed account)
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and there has been further progress this year on the upper tail by Harel, Mousset
and Samotij [16]. Tight bounds are also known in parts of the moderate devi-
ations range, see [6, 7, 14, 12]. For the second instance: Janson and Ruciński
[11] extended their technique to the setting of arithmetic progressions of length k
in random subsets and obtained analogous bounds. More precisely it was shown
that for fixed ε > 0 and k ≥ 3

(1) pC
√
εE[X] ≤ P (X ≥ (1 + ε)E [X]) ≤ pc

√
E[X],

where the constant C = C(k) and c = c(k, ε). Subsequently, Warnke [20] improved
the upperbound in (1) to match the lowerbound, i.e., for fixed ε > 0 and k ≥ 3

(2) pC
√
εE[X] ≤ P (X ≥ (1 + ε)E [X]) ≤ pc

√
εE[X],

where the both constants C and c now only depend on k. Recently Bhattacharya,
Ganguly, Shao and Zhao got precise asymptotics for a more restricted range of p.
They showed in [4] that

P (X ≥ (1 + ε)E [X]) = p(1+o(1))
√
εE[X].

Most counting problems in probabilistic combinatorics can be formulated under
the following general framework: let H be a k-uniform hypergraph on a vertex
set V and let Vp denote a random subset of V where each v ∈ Vp is chosen
independently with probability p. Let X be the random variable given by |E(Vp)|,
the number of edges induced by the random subset Vp. How well can we bound
the probability that X deviates from its expectation? Note that in this setting
the random variable X we wish to understand has a very special structure: it
is a polynomial of degree at most k of independent Bernoulli random variables.
Even so, despite the advances made by Kim and Vu [13] and others, there is no
concentration inequality that systematically gives a sharp bounds to the upper
tail. Indeed, the results in [11] and [20] tackle the problem of large deviations in
this general framework.

Very recently Goldschmidt, Griffiths and Scott [14] introduced a new approach
using martingale methods to analyze moderate deviations in subgraph counts in
the G(n,m) model instead of the G(n, p) model. They argue that, in the case of
moderate deviations, the G(n,m) model is more natural, and in any case show that
very sharp bounds in the G(n, p) model follow from knowledge of the asymptotic
rate in the G(n,m) model.

The present work was motivated by the desire to generalise the methods devel-
oped in [14] to the setting of arithmetic structures given by solutions of a linear
system in an abelian group. In the course of the project we found that the ap-
proach generalised naturally to a class of hypergraphs which have a high degree
of regularity, which include hypergraphs whose edges represent the solutions to
linear systems, see e.g. [17].
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2. The set up and results

Let H be a k-uniform hypergraph with vertex set V and consider the following
random process of ordered subsets Bm ⊆ V : let v1, . . . , vN be a uniformly chosen
permutation of the elements of V and define

Bm = (v1, . . . , vm), m = 0, 1, . . . , N.

Our goal is to bound the probability of deviations from the mean in the number of
edges of H induced by the set Bm. For our analysis, we shall also need to consider
partially filled edges along the process. This motivates the following definitions:

Definition 1. A pair (e, x) is a (H, j)-sequence if e ∈ E(H) is an edge of H
and x = (x1, . . . , xj) is a j-tuple of distinct vertices of e. Let Nj(Bm) denote the
number of (H, j)-sequences induced by Bm and observe that

Nj(Bm) =
∑

e∈E(H)

(|e ∩Bm|)j ,

where for a set S we denote by (S)j the set of all j-tuples of distinct elements of S,
which has cardinality (|S|)j = |S|(|(S|−1) · · · (|S|−j+1). Let Lj(m) = E(Nj(Bm))
be the mean and set

Dj(Bm) = Nj(Bm)− Lj(m).

We now state our main results. We call a hypergraph is r-tuple-regular if every
r-subset belongs to the same number dr of edges.

Theorem 1. Let 1 ≤ r ≤ k. Let H be a k-uniform hypergraph on [N ]. Suppose
that H is (r − 1)-tuple-regular and has maximum r-degree ∆r. Then

P (Dj(Bm) > a) ≤ NOk(1) exp

(
−Ωk(1)a2/r

m∆
2/r
r

)
,

for all r ≤ j ≤ k and for all a > 0.
Furthermore, the same bounds apply to the corresponding negative deviations.

In applications, such as to hypergraphs arising from arithmetic configurations,
the regularity hypothesis is slightly too restrictive. It is natural to consider a
weaker notion of regularity:

Definition 2. A k-uniform hypergraph H = (V,E) is (r, η)-near-regular, 1 ≤
r ≤ k, if every r-subset of vertices is contained in (1±η)d̄r edges, where d̄r = d̄r(H)
denotes the average degree of r-sets in H.

In this setting, we obtain an analogous result at the expense of restricting the
range of deviations covered by the result.

Theorem 2. Let 1 ≤ r ≤ k and let η ∈ [0, 3−r+1]. Let H be a k-uniform hy-
pergraph on [N ]. Suppose that H is (r− 1, η)-near-regular with maximum r-degree
∆r. Then

P (Dj(Bm) > a) ≤ NOk(1) exp

(
−Ωk(1)a2/r

m∆
2/r
r

)
,
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for all r ≤ j ≤ k and for all a ≥ Crη
r/(r−1)h(m/N)(j−1)r/(r−1), where Cr =

(10k!)
10r

.
Furthermore, the same bounds apply to the corresponding negative deviations.

In fact the bound in Theorem 2 is best possible, up to a constant in the exponent.
We will provide details of the construction in the upcomming journal version of
the paper.

Theorem 2 is flexible enough to handle the hypergraph corresponding to counts
of arithmetic configurations arising from solutions of linear systems in the integers
or in cyclic groups (usually with a very small value of η such as 1/N). In particular,
one can obtain the following bound for deviations in the counts of k term arithmetic
progressions:

P (Dk(Bm) > a) ≤ NOk(1) exp
(
−Ωk(1)

a

m

)
.

3. The approach

The proofs of Theorems 1 and Theorem 2 follow a hybrid strategy from [14]
and [13]. We start by expressing the deviation Dj(Bm) as a sum of martingale
increments and also find good bounds for the maximum step size. The martingale
decomposition of Dj(Bm) is a generalization of the subgraph count decomposition
given in [14] to general k-uniform hypergraphs.

In this setting, our main tool to bound the probability of deviations is a simple
modification to the classical Azuma-Hoeffding inequality: if a martingale (M)ni=0

is obtained from a random process with at most n possibilities at each step and
is such that ‖Mi −Mi−1‖∞ < ci for all i = 1, . . . , n except probability at most
exp(−b), then the probability of a deviation a is at most

exp

(
−a2

2
∑n

1 c
2
i

)
+ n exp(−b).

This sets up the basic structure of our proof. In order to obtain strong bounds on
deviation probabilities for (H, j)-sequences we first require good bounds on the re-
lated martingale increments. We show that the martingale increments correspond
to deviations of auxiliary (k−1)-uniform hypergraphs H(x) (sometimes called the
link hypergraphs of H) which inherit some regularity from H. We therefore prove
our main results by a double induction on r, in which P (r) is the statement of the
theorem and Q(r) is a statement about the size of the increments.
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