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THE SIZE-RAMSEY NUMBER

OF POWERS OF BOUNDED DEGREE TREES

S. BERGER, Y. KOHAYAKAWA, G. S. MAESAKA, T. MARTINS, W. MENDONÇA,

G. O. MOTA and O. PARCZYK

Abstract. Given an integer s ≥ 1, the s-colour size-Ramsey number of a graph H
is the smallest integer m such that there exists a graph G with m edges with the

property that, in any colouring of E(G) with s colours, there is a monochromatic

copy of H. We prove that, for any positive integers k and s, the s-colour size-Ramsey
number of the kth power of any n-vertex bounded degree tree is linear in n.

1. Introduction

Given graphs G and H, and a positive integer s, we denote by G → (H)s the
property that any s-colouring of the edges of G contains a monochromatic copy of
H. We are interested in the problem proposed by Erdős, Faudree, Rousseau and
Schelp [9] of determining the minimum integer m for which there is a graph G with
m edges such that property G→ (H)2 holds. Formally, the s-colour size-Ramsey
number r̂s(H) of a graph H is defined as follows:

r̂s(H) := min{|E(G)| : G→ (H)s}.
Answering a question posed by Erdős [8], Beck [2] showed that r̂2(Pn) = O(n)

by means of a probabilistic proof. Alon and Chung [1] proved the same fact by
explicitly constructing a graph G with O(n) edges such that G → (Pn)2. In the
last decades many successive improvements were obtained in order to determine
the size-Ramsey number of paths (see, e.g., [2, 3, 7, 20] for lower bounds, and
[2, 6, 7, 18] for upper bounds). The best known bounds for paths are 3n − 7 ≤
r̂2(Pn) ≤ 74n.

For any s ≥ 2 colours, Dudek and Pra lat [7] and Krivelevich [17] proved that
there are constants c and C such that cs2n ≤ r̂s(Pn) ≤ Cs2(log s)n. Beck asked
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whether r̂2(H) is linear for any bounded degree graph. This question was later an-
swered negatively by Rödl and Szemerédi [19] who constructed a family {Hn}n∈N
of 3-regular graphs with n vertices such that r̂2(Hn) = Ω(n log1/60 n). The cur-
rent best upper bound for the size-Ramsey number of bounded-degree graphs was
obtained in [16] by Kohayakawa, Rödl, Schacht and Szemerdi, who proved that
for any positive integer ∆ there is a constant c such that for any graph H with n
vertices and maximum degree ∆:

r̂2(H) ≤ cn2−1/∆ log1/∆ n.

For more results on the size-Ramsey number of bounded degree graphs see [5, 10,
12, 13, 14, 15].

Let us turn our attention to powers of bounded degree graphs. Let H be a graph
with n vertices and let k be a positive integer. The kth power Hk of H is the graph
with vertex set V (H) in which there is an edge between distinct vertices u and v
if and only if u and v are at distance at most k in H. Recently it was proved that
the 2-colour size-Ramsey number of powers of paths and cycles is linear [4]. This
result was extended to any fixed number s of colours in [11], i.e.,

r̂s(P
k
n ) = Ok,s(n) and r̂s(C

k
n) = Ok,s(n).

In our main result (Theorem 1) we generalize this result by proving that, for any
positive integers k and s, the s-colour size-Ramsey number of the kth power of
any n-vertex bounded degree tree is linear in n.

Theorem 1. For any positive integers k, ∆ and s and any n-vertex tree T with
∆(T ) ≤ ∆, we have

r̂s(T
k) = Ok,∆,s(n).

In Section 2 we give some auxiliary results and state two main lemmas used in
the proof. A sketch of the proof of Theorem 1 is given in Section 3.

2. Auxiliary results

A graph G is said to be (n, a, b)-expanding if for all X ⊂ V (G) with |X| ≤ a(n−1),
we have |NG(X)| ≥ b|X|. In the proof of our main result, we follow the main
strategy developed in [11], combined with two new novel ingredients: (i) a result
that states that any sufficiently large graph G either contains a large expanding
subgraph, or there is a reasonably balanced partition, into a given number of parts,
of a large subset of V (G) with no edges between any two parts; (ii) an embedding
result that says that, to embed a power T k of a tree T in a certain blow-up of
a graph G, it is enough to find an embedding of some tree T ′ in G. Results (i)
and (ii) are given in their precise form in Lemmas 5 and 6.

The following embedding result due to Friedman and Pippenger [10] guarantees
the existence of copies of bounded degree trees in expanding graphs.

Lemma 2. Let n and ∆ be positive integers and G a non-empty graph. If G is
(n, 2,∆+1)-expanding, then G contains any n-vertex tree with maximum degree ∆
as a subgraph.
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Because of Lemma 2, we are interested in graph properties that guarantee
expansion. One such property is ‘bijumbledness’. A graph G on N vertices is
(p, α)-bijumbled if, for all disjoint sets X and Y ⊂ V (G) with |X| ≤ |Y | ≤ pN |X|,
we have

∣∣eG(X,Y ) − p|X||Y |
∣∣ ≤ α

√
pN |X||Y |. Here, eG(X,Y ) is the number of

edges between X and Y in G.

Lemma 3 (Bijumbledness implies expansion). For any positive c, f , D and
θ there is a ≥ 3 such that the following holds. If G is a graph on an vertices
that is (c/n, θ)-bijumbled, then there exists a non-empty subgraph H of G that is
(n, f,D)-expanding.

The following definition plays an important role in our proof.

Definition 4. For a positive number n and positive numbers a, b, c, `, θ, let
Pn(a, b, c, `, θ) denote the class of all graphs G with the following properties, where
N = an and p = c/N .

(i ) |V (G)| = N ,
(ii ) ∆(G) ≤ b,
(iii ) G has no cycles of length at most 2`,
(iv ) G is (p, θ)-bijumbled.

We now state the main two novel ingredients in the proof of our main result,
Theorem 1.

Lemma 5. For any numbers f , D, ` and η there exists A = (` − 1)(D + 1)
(η+f)+η such that the following holds for any sufficiently large n and any graph G
on at least An vertices :

(i ) Either there is ∅ 6= Z ⊂ V (G) such that G[Z] is (n, f,D)-expanding,
(ii ) or there exist V1, . . . , V` ⊆ V (G) such that |Vi| ≥ ηn for 1 ≤ i ≤ ` and

G[Vi, Vj ] is empty for any 1 ≤ i < j ≤ `.

Let G be a graph and ` ≥ r be integers. An (`, r)-blow-up of G is a graph
obtained from G by replacing every vertex of G by a clique of size ` and for every
edge of G arbitrarily adding a complete bipartite graph Kr,r between the two
cliques corresponding to the vertices.

Lemma 6 (Embedding lemma for powers of trees). For any positive integers
∆ and k there exist positive integers r and `0 such that the following holds for
every n-vertex tree T with maximum degree ∆ and ` ≥ `0. There exists a tree
T ′ = T ′(T,∆, k) of maximum degree ∆2k with at most n+ 1 vertices such that for
every graph J , if T ′ ⊂ J , then T k ⊂ J ′ for any (`, r)-blow-up J ′ of J .

3. Proof of the main result

We derive Theorem 1 from Proposition 7 below. But first, given an integer ` ≥ 1,
let us define what we mean by a sheared complete blow-up H{`} of a graph H: this
is any graph obtained by replacing each vertex v in V (H) by a complete graph C(v)
with ` vertices, and by adding all edges but a perfect matching between C(u)
and C(v) for each uv ∈ E(H).
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Proposition 7. For all integers k ≥ 1, ∆ ≥ 2, and s ≥ 1 there exist positive
reals rs, as, bs, cs, `s and θs for which the following holds. If n is sufficiently large
and G ∈ Pn(as, bs, cs, `s, θs) then, for any tree T on n vertices with ∆(T ) ≤ ∆,
we have

Grs{`s} → (T k)s.

Theorem 1 follows from Proposition 7 applied to a certain subgraph of a random
graph.

Proof of Theorem 1. Fix positive integers k, ∆ and s and let T be an n-vertex
tree with maximum degree at most ∆. Proposition 7 applied with parameters k,
∆ and s gives positive reals rs, as, bs, cs, `s and θs. Let N = 3asn. By considering
a certain subgraph of the binomial random graph G(N, p) with p = cs/N , one can
show that there is a graph G ∈ Pn(as, bs, cs, `s, θs), provided that n is sufficiently
large. Proposition 7 tells us that Grs{`s} → (T k)s. Since |V (G)| = asn, ∆(G) ≤
bs, and rs and `s are constants, we have |E(Grs{`s})| = Ok,∆,s(n), which concludes
the proof of Theorem 1. �

We close with a sketch of the proof of Proposition 7. This proof is by induction
on the number of colours s, and is based on Lemmas 8 and 9. Note that in the
following there are some necessary conditions between the parameters a, b, c, `, θ,∆
and k that we omit for simplicity of this sketch.

Lemma 8 (Base Case). For all integers s ≥ 1, k ≥ 1 and ∆ ≥ 2 there are
positive a, b, c, `, θ such that if n is sufficiently large, then the following holds for
any G ∈ Pn(a, b, c, `, θ). For any n-vertex tree T with ∆(T ) ≤ ∆, the graph Gk{`}
contains a copy of T k.

Sketch of the proof of Lemma 8. We first note that, asG is bijumbled, Lemma 3
guarantees that G is expanding. Then, by Lemma 2, we see that there is a copy
of T in G, which implies the existence of a copy of T k in Gk. Finally, a greedy
argument can be used to show that there is a copy of T k in Gk{`}. �

Lemma 9 (Induction Step). For any positive integers ∆ ≥ 2, s ≥ 2, k, r and
positive reals a, b, c, and ` and a sufficiently large constant θ, there exist a positive
integer r′ and positive reals a′, b′, c′, `′ and θ′ such that the following holds. If n is
sufficiently large then for any graph G ∈ Pn(a′, b′, c′, `′, θ′) and any s-colouring χ

of E(Gr′{`′}) either

(i ) there is a monochromatic copy of T k in Gr′{`′} for any n-vertex tree T with
∆(T ) ≤ ∆, or

(ii ) there is H ∈ Pn(a, b, c, `, θ) such that Hr{`} ⊂ Gr′{`′} and Hr{`} is
coloured with at most s− 1 colours under χ.

Sketch of the proof of Lemma 9. We start by fixing suitable constants r′, a′, b′,
c′, `′ and θ′. Let n be sufficiently large and let G ∈ Pn(a′, b′, c′, `′, θ′) be given.

Give an arbitrary colouring χ to the edges of a sheared complete blow-up Gr′{`′}
of Gr′ with s colours. We shall prove that either there is a monochromatic copy
of T k in Gr′{`′}, or there is a graph H ∈ Pn(a, b, c, `, θ) such that a sheared
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complete blow-up Hr{`} of Hr is a subgraph of Gr′{`′} and this copy of Hr{`} is
coloured with at most s− 1 colours under χ.

First, note that, by Ramsey’s theorem, if `′ is large then each `′-clique C(v)

of Gr′{`′} contains a large monochromatic clique. Let blue be the colour of
these monochromatic cliques in the majority of the C(v). Let these blue cliques

be B(v) ⊂ C(v). Then we consider a graph J ⊂ Gr′ induced by the vertices v
corresponding to the blue cliques B(v) and having only the edges {u, v} such that
there is a blue copy of Kr′,r′ under χ in the bipartite graph induced between the

blue cliques B(u) and B(v) in Gr′{L}.
Then, by Lemma 5 applied to J , either there is a set ∅ 6= W ⊂ V (J) such that

J [W ] is expading, or there are large disjoint sets V1, . . . , V` with no edges between
them in J . In the first case, Lemma 6 guarantees that there is a tree T ′ such that,
if T ′ ⊂ J [W ], then there is a blue copy of T k in Gr′{`′}. To prove that T ′ ⊂ J [W ],
we recall that J [W ] is expanding and use Lemma 2. This finishes the proof of the
first case.

Now let us consider the second case, in which there are large disjoint sets
V1, . . . , V` with no edges between them in J . The idea is to obtain a graph H ∈
Pn(a, b, c, `, θ) such that Hr{`} ⊂ Gr′{`′} and, moreover, Hr{`} does not have
any blue edge. For that we first obtain a path Q in G with vertices (x1, . . . , x2a`n)
such that xi ∈ Vj for all i where i = j mod `. Then we partition Q into 2an
paths Q1, . . . , Q2an with ` vertices each, and consider an auxiliary graph H ′ on
V (H ′) = {Q1, . . . , Q2an} with QiQj ∈ E(H ′) if and only EG(V (Qi), V (Qj)) 6= ∅.
We obtain a sparse subgraph H ′′ ⊂ H ′ by choosing edges of H ′ uniformly at ran-
dom with a suitable probability p. Then, successively removing vertices of high
degree, we obtain a graph H ⊂ H ′′ with H ∈ Pn(a, b, c, `, θ). It now remains to

find a copy of Hr{t} in Gr′{`′} with no blue edges. To do so, we first observe

that the paths Qi ∈ V (H ′) give rise to `-cliques in Gr′ (r′ ≥ `). One can then

prove that there is a copy of Hr{`} in Gr′{`′} with no blue edges by applying the
Lovász local lemma. �
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