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A NEW LOWER BOUND ON HADWIGER-DEBRUNNER

NUMBERS IN THE PLANE

C. KELLER and S. SMORODINSKY

Abstract. A family of sets F is said to satisfy the (p, q)-property if among any p

sets in F some q have a non-empty intersection. Hadwiger and Debrunner (1957)
conjectured that for any p ≥ q ≥ d + 1 there exists c = cd(p, q), such that any

family of compact convex sets in Rd that satisfies the (p, q)-property can be pierced

by at most c points. In a celebrated result from 1992, Alon and Kleitman proved
the conjecture. However, obtaining sharp bounds on cd(p, q), known as the ‘the

Hadwiger-Debrunner numbers,’ is still a major open problem in combinatorial ge-

ometry. The best currently known lower bound on the Hadwiger-Debrunner num-
bers in the plane is c2(p, q) = Ω( p

q
log( p

q
)), while the best known upper bound is

O(p
(1.5+δ)(1+ 1

q−2
)
).

In this paper we improve the lower bound significantly by showing that c2(p, q) ≥
p1+Ω(1/q). Furthermore, the bound is obtained by a family of lines and is tight

for all families that have a bounded VC-dimension. Unlike previous bounds on the
Hadwiger-Debrunner numbers, which mainly used the weak epsilon-net theorem, our

bound stems from a surprising connection of the (p, q)-problem to an old problem

of Erdős on points in general position in the plane. We use a novel construction for
the Erdős’ problem, obtained recently by Balogh and Solymosi using the hypergraph

container method, to get the lower bound on c2(p, 3). We then generalize the bound

to c2(p, q) for any q ≥ 3.

1. Introduction

Helly’s theorem, the (p, q)-theorem, and Hadwiger-Debrunner numbers. The clas-
sical Helly’s theorem asserts that if in some finite family F of convex sets in Rd,
any d + 1 sets have a non-empty intersection, then the whole family has a non-
empty intersection, i.e., it can be pierced by one point. One of the most challenging
extensions of Helly’s theorem was introduced by relaxing the intersection assump-
tion into a weaker assumption known as the (p, q)-property: Among any p sets in
F , some q have a non-empty intersection.
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Clearly, not every family that satisfies the (p, q)-property has a non-empty in-
tersection; still, one may hope that such a family can be pierced by a ‘small’
number of points. Indeed, Hadwiger and Debrunner [13] conjectured that for all
p ≥ q ≥ d + 1, any family of convex sets in Rd that satisfies the (p, q)-property
can be pierced by a constant number of points, independently of the size of the
family. The minimum number of such points is denoted by c = cd(p, q). Hadwiger
and Debrunner proved their conjecture for the special case when q > d−1

d p + 1,
with c = p− q+ 1; on the other hand, they showed that p− q+ 1 is a lower bound
on cd(p, q) for all pairs p ≥ q.

After 35 years, the Hadwiger-Debrunner conjecture was proved in a celebrated
result of Alon and Kleitman [2], also known as the (p, q)-theorem. The (p, q)-theo-
rem has become a classical result in combinatorial geometry, and was generalized
to various settings in numerous works (see, e.g., the survey [10]). In addition to
its importance within combinatorics, it has found applications to diverse fields,
including model theory in mathematical logic (see [8]) and social choice theory in
economics (see [5]).

The upper bound on cd(p, q) yielded by the proof of the (p, q)-theorem is

Õ(pd
2+d) (for the case q = d + 1). Alon and Kleitman noted that this bound

is far from being tight, and since then, the problem of obtaining tight bounds on
cd(p, q) (also called the ‘Hadwiger-Debrunner numbers’ and denoted HDd(p, q))
remains a major open problem in combinatorial geometry.

Despite extensive research, little is known about the asymptotics of HDd(p, q).
Near optimal upper bounds were very recently obtained for very large values of q

(for example, HDd(p, q) ≤ p − q + 2 for all q > p
d−1
d +ε [18]). Tight bounds were

also obtained for specific classes of families (e.g., families of axis-parallel rectangles,
see [9, 16]), and for specific values of p, q, d (see [15]). However, neither of these
results extends to general (p, q).
Weak epsilon-nets and their relation to HDd(p, q). The best currently known lower
bounds on HDd(p, q) are obtained by lower bounds on the so-called weak epsilon-
nets. For a finite family of points G ⊂ Rd and for ε > 0, a weak ε-net for G is a set
S of points (not necessarily in G) such that any convex set T ⊂ Rd that contains
at least ε|G| points of G also contains a point of S.

Alon et al. [1] proved that for any d, ε there exists a bound fd(ε) such that any
finite G ⊂ Rd admits a weak ε-net of size at most fd(ε). However, the bound on
fd(ε) is far from being tight, and improving it remains another important open
problem. In a very recent breakthrough, Rubin [20] showed that for any δ > 0,
every G ⊂ R2 admits a weak ε-net of size at most Oδ(ε

−1.5−δ). This is still far from

the best known lower bound fd(ε) = 1
ε logd−1( 1

ε ) obtained by Bukh, Matoušek and
Nivasch [7], which is conjectured to be close to tight.

Weak ε-nets are closely related to the (p, q)-theorem. Indeed, for any set of
points G, it is easy to see that the family F of all convex sets that contain at least
ε0 = q/p points of G satisfies the (p, q)-property. If the size of the smallest weak
ε0-net for G is `, then F is a family of convex sets that satisfies the (p, q)-property
and cannot be pierced by less than ` points. Therefore, any lower bound on fd(ε)
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translates immediately into a lower bound on HDd(p, q). The best known lower
bound on HDd(p, q) is of the form:

(1) HDd(p, q) = Ω

(
p

q
logd−1

(p
q

))
,

following immediately from the aforementioned lower bound of Bukh et al. [7] on
fd(ε).

While upper bounds on fd(ε) do not translate directly into upper bounds
on HDd(p, q), the weak epsilon-net theorem plays a central role in the Alon-
Kleitman’s proof of the (p, q)-theorem, and the best currently known general up-
per bound for HDd(p, q), obtained in [18, Proposition 2.6], is formulated in terms
of fd(ε):

(2) HDd(p, q) ≤ fd
(

Ω(p−1− d−1
q−d )

)
.

In particular, using Rubin’s result [20], in the plane we have

HD2(p, q) = O(p(1.5+δ)(1+ 1
q−2 ))

for any δ > 0 and p > p0(δ).

2. Our main result

In this paper we present a new general lower bound on HDd(p, q) which is a sig-

nificant improvement over the best previous bound HDd(p, q) = Ω(pq logd−1(pq )):

Theorem 2.1. For any 0 < η < 1/2 and for any p, q ≥ 3 such that q ≤ 0.01η ·
( log p

log log p )1/3, there exists a family F of lines in R2 that satisfies the (p, q)-property

and cannot be pierced by less than p1+ 1−η
4q−7 points. Consequently, HDd(p, q) ≥

p1+ 1−η
4q−7 for all d ≥ 2.

Importantly, while our lower bound construction uses a family of lines, which
are, in some sense, the ‘simplest’ convex objects, it is tight for a wide class of
families, namely, all families whose so-called VC-dimension is bounded.

To explain the above statement, a few definitions are needed. For a family of sets
F , a set C is said to be shattered by F if the set {F ∩ C : F ∈ F} contains all 2|C|

subsets of C. The VC-dimension of F is sup{c ∈ N : F shatters some set of cardi-
nality c}. For example, it is easy to see that the VC-dimension of any family of
lines is at most 2.

The notion ‘VC-dimension’ was introduced by Vapnik and Chervonenkis [22],
and since then has found numerous applications (e.g., to computational geome-
try and to machine learning) and has been studied extensively in the past few
decades (see, e.g., [19]). Haussler and Welzl [14] proved that any family G
with VC-dimension at most r admits a weak ε-net (and actually, the significantly
stronger notion of ‘ε-net’, see [19]) of size O( rε log( rε )).

Substituting the assertion of the Haussler-Welzl theorem into (2), we obtain

the upper bound HD2(p, q) ≤ O
(
p1+ 1

q−2 log p
)

for any finite family F of convex
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sets in the plane with a bounded VC-dimension. Therefore, Theorem 2.1 shows
that within the class of families with a bounded VC-dimension we have cd(p, q) =
p1+Θ(1/q).
Connection to a problem of Erdős on points in general position in the plane.
While the best previously known bounds on the Hadwiger-Debrunner numbers
were obtained via improved bounds for the weak epsilon-net theorem, our bound
stems from a surprising connection between the (p, q)-problem and an old problem
of Erdős regarding points in general position in the plane.

In [11], Erdős raised the following problem: What is the maximal possible
` = `(n) such that any set S of n points, with no four of them collinear, contains
a subset of size ` in general position (that is, with no three collinear points)?

Until recently, the best known upper bound for Erdős problem was `(n) = o(n),
proved by Füredi [12] using the Density Hales-Jewett theorem of Katznelson and
Furstenberg (1989). In a major breakthrough, Balogh and Solymosi [6] proved
that `(n) ≤ n5/6+δ, for any δ > 0 and any n > n0(δ).

The main observation underlying our results is that an upper bound for the
Erdős problem is directly translated into a lower bound on HD2(p, 3). Indeed,
let S be a set of n points in the plane with no collinear 4-tuple, such that any
subset of S of size at least `(n) contains a collinear 3-tuple. By point-line duality
in the plane, we can transform S into a family F of n lines, such that no four
lines share a common point, while each subset of F of size `(n) contains three
lines with a common point. The latter condition means exactly that F satisfies
the (`(n), 3) property. On the other hand, the former condition implies that F
cannot be pierced by less than n/3 points. Hence, F is a family of convex sets in
the plane that satisfies the (`(n), 3) property but cannot be pierced by less than
n/3 points, and thus, HD2(`(n), 3) ≥ n/3.

Combining this observation with the result of Balogh and Solymosi, we imme-
diately obtain the lower bound

HD2(p, 3) ≥ p 6
5−δ,

for all δ > 0 and p > p0(δ), which is the assertion of Theorem 2.1 in the case q = 3.
The result for a general q ≥ 3 is much more involved; it requires generalizing the
construction of Balogh and Solymosi and their argument to random subsets of the
hypergraph H(n, 2q−2, q) whose vertices are the points in the (2q−2)-dimensional
grid and whose hyperedges are collinear q-tuples. Importantly, the choice of di-
mension is crucial for obtaining Theorem 2.1; applying the same technique with
the q-dimensional grid leads to a significantly weaker result.

3. Main techniques and proof outline

Our proof follows and extends the proof framework of Balogh and Solymosi [6],
whose heart is an application of the hypergraph container method.
The hypergraph container method. This method was introduced independently by
Saxton and Thomason [21] and by Balogh, Morris, and Samotij [3]. Intuitively,
for a hypergraph H = (V,E) whose co-degrees are ‘distributed evenly,’ the method
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allows us to find a relatively small family C of ‘not-too-large’ subsets of V known
as ‘containers,’ such that each independent set in V is included in some container
C ∈ C. This, in turn, allows us to bound the number of independent sets of any
fixed size. In the few years since the method was introduced, it has been applied
to numerous problems in extremal graph theory, Ramsey theory, and additive
combinatorics (see the survey [4]). The result of Balogh and Solymosi was the
first application of the method to combinatorial geometry.
Proof outline. For n, k, q ∈ N , we denote by H(n, k, q) the q-uniform hypergraph
whose vertex set is the k-dimensional grid {1, 2, . . . , n}k, and whose hyperedges
are all collinear q-tuples of vertices. The proof of our main theorem consists of
three stages:

1. Reduction stage. We show that it is sufficient to prove that for some n, k, u,

there exists a subset S of {1, 2, . . . , n}k of size at least (u− 1) · p1+ 1−η
4q−7 that does

not contain collinear u-tuples and also does not contain independent sets of size
at least p of the hypergraph H(n, k, q).

2. A general upper bound on the number of independent m-subsets of H(n, k, r).
We obtain an upper bound on the number of independent subsets of size m of the
hypergraph H(n, k, r), as a function of n, k, r,m. The idea behind this stage is
that if the number of independent subsets of size p of H(n, k, q) is ‘small’, then
it is easier for a randomly chosen subset of the vertices of H(n, k, q) to be free of
independent sets of size p. This stage uses the hypergraph container method.

3. Probabilistic construction. We construct the required set S using the proba-
bilistic method. Specifically, we consider an α-random subset S̃ of {1, 2, . . . , n}k
for some n, k, α. We show that for an appropriate choice of all the parameters
involved, with a positive probability, the subset S̃ does not contain independent
sets of H(n, k, q) of size p and contains only a small amount of collinear u-tuples,

so that we can remove them and obtain a set S of size at least (u − 1) · p1+ 1−η
4q−7

with no collinear u-tuples and no independent subsets of H(n, k, q) of size p.

The full proof, as well as an application of our technique to a natural hypergraph
coloring problem, can be found in the full version of the paper available online [17].
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