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SOME RESULTS AROUND

THE ERDŐS MATCHING CONJECTURE

P. FRANKL and A. KUPAVSKII

Abstract. More than 50 years ago, Erdős asked the following question: what is
the largest family of k-element subsets of [n] with no s pairwise disjoint sets? In

this abstract, we discuss recent progress on this problem and its generalizations.

1. The Erdős Matching Conjecture

Let F ⊂
(
[n]
k

)
be a family of k-element subsets on the vertex set [n] := {1, . . . , n}.

Erdős suggested the following problem: determine the maximum of |F|, given
that F has no s pairwise disjoint sets. Each of the following families satisfies this
requirement.

(1) Ai :=

{
A ∈

(
[n]

k

)
: |A ∩ [is− 1]| ≥ i

}
.

Erdős Matching Conjecture (Erdős, [5]). If n ≥ k(s+ 1) and F ⊂
(
[n]
k

)
has

no s pairwise disjoint sets then

(2) |F| ≤ max
{
|A1|, |Ak|

}
= max

{(
n

k

)
−
(
n− s + 1

k

)
,

(
ks− 1

k

)}
.

The Erdős Matching Conjecture, or EMC for short, is trivial for k = 1 and
was proved by Erdős and Gallai [6] for k = 2. It was settled in the case k = 3
[20, 25, 9]. The case s = 2 is the classical Erdős-Ko-Rado theorem [7] which was
the starting point of a large part of ongoing research in extremal set theory.

In his original paper, Erdős proved (2) for n ≥ n0(k, s). After some improve-
ments [4, 22], the current best bound is due to the first author, who proved (2)
for n ≥ 2sk− s (cf. [8]). An easy computation shows that |A1| > |Ak| already for
n ≥ (k+1)s, that is, |F| ≤

(
n
k

)
−
(
n−s+1

k

)
should hold also for (k+1)s < n < 2sk−s.
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For n = ks the EMC was implicitly proved by Kleitman [24]. This was extended
very recently by the first author [10], who showed that |F| ≤ |Ak| in (2) for all
n ≤ s(k + ε), where ε depends on k. Our first result is the following theorem.

Theorem 1 ([17]). There exists an absolute constant s0, such that any F⊂
(
[n]
k

)
with no s pairwise disjoint sets satisfies

(3) |F| ≤
(
n

k

)
−
(
n− s + 1

k

)
,

provided n ≥ 5
3sk −

2
3s and s ≥ s0.

Roughly speaking, Theorem 1 settles the EMC for 1/3 of the cases left over by
[8]. We believe that the EMC is one the most important open problems in extremal
set theory, playing a major role in several extremal problems in combinatorics and
beyond (see, e.g., [3]). In particular, the EMC is related for the study of its
non-uniform analogue, suggested by Erdős and Kleitman [24]. We have recently
obtained significant progress on this and related questions [11]–[16].

2. Several families

We say that F1, . . . ,Fs are cross-dependent if there are no sets F1∈F1, . . . , Fs∈Fs

that are pairwise disjoint. The following multipartite version of the EMC was
addressed by Aharoni and Howard [1], as well as by Huang, Loh and Sudakov [22]:

Problem 1. Given that the families F1, . . . ,Fs⊂
(
[n]
k

)
that are cross-dependent,

find mini∈[s] |Fi|.

We note here that some authors use the term “F1, . . . ,Fs contain a rainbow
matching” to refer to the situation, opposite to “cross-dependence”. In [22], the
authors proved the following result.

Theorem 2 ([22]). If n > 3sk2 and F1, . . . ,Fs ⊂
(
[n]
k

)
are cross-dependent

then

(4) min
i∈[s]
|Fi| ≤

(
n

k

)
−
(
n− s + 1

k

)
.

It is clear that the bound here is attained on F1 = · · · = Fs = A1 and that,
substituting F = F1 = · · · = Fs, one recovers the statement of the EMC. Unfortu-
nately, the techniques developed in [8] and [17] do not seem to apply to the more
general setting of Problem 1.

The bound (4) was obtained for n > f(s)k with some unspecified and very fast
growing function f(s) by Keller and Lifshitz in [23] as an application of the junta
method. We note that their results apply to a much more general setting. In [18],
we managed to obtain sharp junta approximation-type results for shifted families.

Definition 1. Consider two sets Fi = (ai1, . . . , a
i
k) with ai1 < ai2 < · · · < aik

for i = 1, 2. Then F1 ≺s F2 iff a1j ≤ a2j for every j ∈ [k]. We say that a family

F ⊂
(
[n]
k

)
is shifted if F ∈ F and G ≺s F implies G ∈ F .
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As a result, we managed to improve Theorem 2 to an almost-linear bound.

Theorem 3 ([18]). The statement of Theorem 2 holds for n ≥ 12ks log(e2s).

We note that the validity of Theorem 3 for n > Csk with some large C was
announced by Keevash, Lifshitz, Long, and Minzer as a consequence of general
sharp threshold-type results.

3. Beyond the Erdős Matching Conjecture

Let us introduce the following general notion.

Definition 1. Let k, s ≥ 2 and k ≤ q < sk be integers. A k-graph F ⊂
(
[n]
k

)
is

said to have property U(s, q) if

(5) |F1 ∪ · · · ∪ Fs| ≤ q

for all choices of F1, . . . , Fs ∈ F . For shorthand, we will also say F is U(s, q) to
refer to this property.

Not that being U(2, 2k− t) is equivalent to being t-intersecting1 and, similarly,
being U(s, sk − 1) is equivalent to having no s pairwise disjoint sets. Define the
following families.

(6) Ap,r :=
{
A ∈

(
[n]

k

)
: |A ∩ [p]| ≥ r

}
.

Note that Ap,r is U(s, (k − r)s + p) for all s. Note also that, comparing this with
(1), we have Ai = Ais−1,s. With this notation, the famous Complete Intersection
Theorem [2] states that

(7) if F is U(2, 2k − t) then |F| ≤ max
0≤i≤k−t

|A2i+t,i+t|,

and one may reformulate the EMC analogously:

(8) if F is U(s, sk − 1) then |F| ≤ max
i∈{1,k}

|Asi−1,i|.

Thus, the EMC and the Complete Intersection Theorem may essentially be seen
as particular cases of the following general conjecture.

Conjecture 1. Fix n, k, s, q and assume that F ⊂
(
[n]
k

)
is U(s, q), where q =

(k − r)s + p with r ≤ p ≤ s + r − 2. Then |F| ≤ max0≤i≤k−r |Ap+is,r+i|.

(The statement of the EMC is actually slightly stronger, stating that U(s, sk−1)
is attained on of the two possible values of i rather than k, as suggested by the
conjecture.)

We managed to verify the conjecture for a wide range of the parameters.

1That is, |F1 ∩ F2| ≥ t for any F1, F2 ∈ F .
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Theorem 4 ([19]). Fix some integers n, k, s, p, r, such that 1 ≤ r ≤ k and

r ≤ p ≤ s+ r−2. Suppose that F ⊂
(
[n]
k

)
has property U(s, q) for q = (k− r)s+p.

If n ≥ C(s, r)k, then2

|F| ≤ |Ap,r|.

For r = p = 1, the theorem (with the precise form of C(s, r)) implies the
following.

Corollary 1. For n ≥ s2k any family F ⊂
(
[n]
k

)
that is UP (s, (k− 1)s+ 1) has

size at most
(
n−1
k−1
)
, which is the size of the largest intersecting family {F ∈

(
[n]
k

)
:

1 ∈ F}.

Thus, Theorem 4 can be seen as a sharpening of the Erdős–Ko–Rado theorem.
Indeed, if a family F is intersecting, then the union of any s sets has size at most
(k − 1)s + 1, but not vice versa.
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