SOME RESULTS AROUND THE ERDŐS MATCHING CONJECTURE

P. FRANKL and A. KUPAVSKII

Abstract. More than 50 years ago, Erdős asked the following question: what is the largest family of k-element subsets of $[n]$ with no s pairwise disjoint sets? In this abstract, we discuss recent progress on this problem and its generalizations.

1. The Erdős Matching Conjecture

Let $F \subseteq \binom{[n]}{k}$ be a family of k-element subsets on the vertex set $[n] := \{1, \ldots, n\}$. Erdős suggested the following problem: determine the maximum of $|F|$, given that F has no s pairwise disjoint sets. Each of the following families satisfies this requirement.

(1) $A_i := \left\{ A \in \binom{[n]}{k} : |A \cap [i - 1]| \geq i \right\}$.

Erdős Matching Conjecture (Erdős, [5]). If $n \geq k(s + 1)$ and $F \subseteq \binom{[n]}{k}$ has no s pairwise disjoint sets then

(2) $|F| \leq \max \{|A_1|, |A_k|\} = \max \left\{ \binom{n}{k} - \binom{n - s + 1}{k}, \binom{ks - 1}{k} \right\}$.

The Erdős Matching Conjecture, or EMC for short, is trivial for $k = 1$ and was proved by Erdős and Gallai [6] for $k = 2$. It was settled in the case $k = 3$ [20, 25, 9]. The case $s = 2$ is the classical Erdős-Ko-Rado theorem [7] which was the starting point of a large part of ongoing research in extremal set theory.

In his original paper, Erdős proved (2) for $n \geq n_0(k, s)$. After some improvements [4, 22], the current best bound is due to the first author, who proved (2) for $n \geq 2sk - s$ (cf. [8]). An easy computation shows that $|A_1| > |A_k|$ already for $n \geq (k+1)s$, that is, $|F| \leq \binom{n}{k} - \binom{n-s+1}{k}$ should hold also for $(k+1)s < n < 2sk-s$.

Received June 7, 2019.
2010 Mathematics Subject Classification. Primary 05D05.
Key words and phrases. Matchings in hypergraphs, Erdős Matching Conjecture.

A. Kupavskii was supported by the Advanced Postdoc.Mobility grant no. P300P2_177839 of the Swiss National Science Foundation, by the Russian Foundation for Basic Research (grant no. 18-01-00355), and the Council for the Support of Leading Scientific Schools of the President of the Russian Federation (grant no. N.Sh.-6760.2018.1).
For \(n = ks \) the EMC was implicitly proved by Kleitman [24]. This was extended very recently by the first author [10], who showed that \(|F| \leq |A_k|\) in (2) for all \(n \leq s(k + \varepsilon) \), where \(\varepsilon \) depends on \(k \). Our first result is the following theorem.

Theorem 1 ([17]). There exists an absolute constant \(s_0 \), such that any \(F \subset \binom{[n]}{k} \) with no \(s \) pairwise disjoint sets satisfies

\[
|F| \leq \binom{n}{k} - \binom{n - s + 1}{k},
\]

provided \(n \geq \frac{5}{4}sk - \frac{2}{5}s \) and \(s \geq s_0 \).

Roughly speaking, Theorem 1 settles the EMC for \(1/3 \) of the cases left over by [8]. We believe that the EMC is one the most important open problems in extremal set theory, playing a major role in several extremal problems in combinatorics and beyond (see, e.g., [3]). In particular, the EMC is related for the study of its non-uniform analogue, suggested by Erdős and Kleitman [24]. We have recently obtained significant progress on this and related questions [11]–[16].

2. **Several families**

We say that \(F_1, \ldots, F_s \) are cross-dependent if there are no sets \(F_1 \in F_1, \ldots, F_s \in F_s \) that are pairwise disjoint. The following multipartite version of the EMC was addressed by Aharoni and Howard [1], as well as by Huang, Loh and Sudakov [22]:

Problem 1. Given that the families \(F_1, \ldots, F_s \subset \binom{[n]}{k} \) that are cross-dependent, find \(\min_{i \in [s]} |F_i| \).

We note here that some authors use the term “\(F_1, \ldots, F_s \) contain a rainbow matching” to refer to the situation, opposite to “cross-dependence”. In [22], the authors proved the following result.

Theorem 2 ([22]). If \(n > 3sk^2 \) and \(F_1, \ldots, F_s \subset \binom{[n]}{k} \) are cross-dependent then

\[
\min_{i \in [s]} |F_i| \leq \binom{n}{k} - \binom{n - s + 1}{k}.
\]

It is clear that the bound here is attained on \(F_1 = \cdots = F_s = A_1 \) and that, substituting \(F = F_1 = \cdots = F_s \), one recovers the statement of the EMC. Unfortunately, the techniques developed in [8] and [17] do not seem to apply to the more general setting of Problem 1.

The bound (4) was obtained for \(n > f(s)k \) with some unspecified and very fast growing function \(f(s) \) by Keller and Lifshitz in [23] as an application of the junta method. We note that their results apply to a much more general setting. In [18], we managed to obtain sharp junta approximation-type results for shifted families.

Definition 1. Consider two sets \(F_1 = (a_1^i, \ldots, a_k^i) \) with \(a_1^i < a_2^i < \cdots < a_k^i \) for \(i = 1, 2 \). Then \(F_1 \prec_s F_2 \) if \(a_j^1 \leq a_j^2 \) for every \(j \in [k] \). We say that a family \(F \subset \binom{[n]}{k} \) is **shifted** if \(F \in \mathcal{F} \) and \(G \prec_s F \) implies \(G \in \mathcal{F} \).
As a result, we managed to improve Theorem 2 to an almost-linear bound.

Theorem 3 ([18]). The statement of Theorem 2 holds for \(n \geq 12ks \log(e^2s) \).

We note that the validity of Theorem 3 for \(n > Csk \) with some large \(C \) was announced by Keevash, Lifshitz, Long, and Minzer as a consequence of general sharp threshold-type results.

3. Beyond the Erdős Matching Conjecture

Let us introduce the following general notion.

Definition 1. Let \(k, s \geq 2 \) and \(k \leq q < sk \) be integers. A \(k \)-graph \(F \subset \binom{[n]}{k} \) is said to have property \(U(s, q) \) if
\[
|F_1 \cup \cdots \cup F_s| \leq q
\]
for all choices of \(F_1, \ldots, F_s \in F \). For shorthand, we will also say \(F \) is \(U(s, q) \) to refer to this property.

Not that being \(U(2, 2k - t) \) is equivalent to being \(t \)-intersecting\(^1\) and, similarly, being \(U(s, sk - 1) \) is equivalent to having no \(s \) pairwise disjoint sets. Define the following families.

\[
\mathcal{A}_{p,r} := \left\{ A \in \binom{[n]}{k} : |A \cap [p]| \geq r \right\}.
\]

Note that \(\mathcal{A}_{p,r} \) is \(U(s, (k - r)s + p) \) for all \(s \). Note also that, comparing this with (1), we have \(A_i = \mathcal{A}_{is-1,s} \). With this notation, the famous Complete Intersection Theorem [2] states that
\[
\text{if } F \text{ is } U(2, 2k - t) \text{ then } |F| \leq \max_{0 \leq i \leq k-t} |\mathcal{A}_{2i+t,i+t}|,
\]
and one may reformulate the EMC analogously:
\[
\text{if } F \text{ is } U(s, sk - 1) \text{ then } |F| \leq \max_{i \in \{1,k\}} |\mathcal{A}_{si-1,i}|.
\]

Thus, the EMC and the Complete Intersection Theorem may essentially be seen as particular cases of the following general conjecture.

Conjecture 1. Fix \(n, k, s, q \) and assume that \(F \subset \binom{[n]}{k} \) is \(U(s, q) \), where \(q = (k - r)s + p \) with \(r \leq p \leq s + r - 2 \). Then \(|F| \leq \max_{0 \leq i \leq k-r} |\mathcal{A}_{p+i,s+r+i}| \).

(The statement of the EMC is actually slightly stronger, stating that \(U(s, sk - 1) \) is attained on of the two possible values of \(i \) rather than \(k \), as suggested by the conjecture.)

We managed to verify the conjecture for a wide range of the parameters.

\(^1\)That is, \(|F_1 \cap F_2| \geq t \) for any \(F_1, F_2 \in F \).
Theorem 4 ([19]). Fix some integers \(n, k, s, p, r \), such that \(1 \leq r \leq k \) and \(r \leq p \leq s + r - 2 \). Suppose that \(\mathcal{F} \subset \binom{[n]}{k} \) has property \(U(s, q) \) for \(q = (k - r)s + p \). If \(n \geq C(s, r)k \), then
\[
|\mathcal{F}| \leq |A_{p,r}|.
\]

For \(r = p = 1 \), the theorem (with the precise form of \(C(s, r) \)) implies the following.

Corollary 1. For \(n \geq s^2k \) any family \(\mathcal{F} \subset \binom{[n]}{k} \) that is \(UP(s, (k-1)s + 1) \) has size at most \(\binom{n-1}{k-1} \), which is the size of the largest intersecting family \(\{ F \in \binom{[n]}{k} : 1 \in F \} \).

Thus, Theorem 4 can be seen as a sharpening of the Erdős–Ko–Rado theorem. Indeed, if a family \(\mathcal{F} \) is intersecting, then the union of any \(s \) sets has size at most \((k - 1)s + 1 \), but not vice versa.

References

1. Aharoni R. and Howard D., Size conditions for the existence of rainbow matchings, unpublished manuscript.

\(^2\)The statement is simplified, but the function \(C(s, r) \) is roughly \(s^{r+1} \). Moreover, one recovers the bound from [8] for \(q = sk - 1 \).

P. Frankl, Alfréd Rényi Institute of Mathematics, Budapest, Hungary,
e-mail: peter.frankl@gmail.com

A. Kupavskii, Moscow Institute of Physics and Technology, Moscow, Russia;
University of Oxford, Oxford, United Kingdom,
e-mail: kupavskii@yandex.ru