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CYCLES THROUGH A SET OF SPECIFIED VERTICES

OF A PLANAR GRAPH

S. MOHR

Abstract. Confirming a conjecture of Plummer, Thomas and Yu proved that a
4-connected planar graph contains a cycle through all but two (freely choosable)

vertices. Here we prove that a planar graph G contains a cycle through Xr{x1, x2}
if X ⊆ V (G), X large enough, x1, x2 ∈ X, and X cannot be separated in G by
removing less than 4 vertices.

In the present paper, we consider simple, finite, and undirected graphs G, where
V (G) and E(G) denote the vertex set and the edge set of G, respectively. For graph
terminology not defined here, we refer to [1].

Tutte [8] proved that every 4-connected planar graph has a hamiltonian cycle,
and Thomassen [7] generalized this result by showing that every 4-connected pla-
nar graph has a hamiltonian path connecting every pair of two specified vertices.
Eventually, Sanders [5] extended the results of Thomassen and of Tutte and proved
the following

Theorem 1 (Sanders [5]). Every 4-connected planar graph has a hamiltonian
cycle containing any two specified edges.

The results in [5] readily imply that the deletion of any vertex from a 4-con-
nected planar graph results in a hamiltonian graph. Thomas and Yu [6] proved a
conjecture of Plummer [4] that this is also true if two vertices are deleted.

Theorem 2 (Thomas, Yu [6]). Let G be a 4-connected planar graph and x, y ∈
V (G). Then G− {x, y} has a hamiltonian cycle.

It is well known, that for each integer k there is a 3-connected graph on n
vertices such that a longest cycle contains at most n − k vertices. Furthermore,
if three vertices of a 4-separator of a graph are removed, then the resulting graph
will not contain a hamiltonian cycle. Thus, Theorem 2 is best possible.

Assume that G is a 4-connected planar graph on the vertex set V (G), thus,
|V (G)| ≥ 6. By Menger’s Theorem [3], the 4-connectivity of G is equivalent to the
fact that each pair of vertices is connected by at least four paths in G such that
each two of these paths have just these two vertices as end vertices in common.
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By the previous Theorem 2, we know that G has a cycle C through all but two
freely selectable vertices x and y.

Let H be a subdivision of G. Then H contains a subdivision C ′ of the cycle C
containing V (G) r {x, y} and, moreover, there are at least four internally vertex-
disjoint paths in H between any two vertices of V (G). In this sense, V (G) is still
4-connected in H, even through H is only a 2-connected graph and the existence
of the cycle C ′ in H cannot guarantied by Theorem 2 anymore.

Motivated by this problem, we intend to define a connectivity of a subset X of
the vertex set of a graph and prove a theorem similar to Thomas’ and Yu’s result
if X is 4-connected in this sense.

Given a subset ∅ 6= X ⊆ V (G) of G, we define the connectivity of X in G. A set
S ⊂ V (G) is an X-separator of G if the graph G−S obtained from G by removing
S contains at least two components each containing a vertex of X. Let κG(X) be
the maximum integer less than or equal to |X|−1 such that the cardinality of each
X-separator S ⊂ V (G) – if any exists – is at least κG(X). According to this, it is
clear that κG(V (G)) = k if and only if G is k-connected but not (k+1)-connected.

For a subset ∅ 6= X ⊆ V (G) of G, Harant and Senitsch [2] extended Theorem 1.

Theorem 3 (Harant, Senitsch [2]). Let G be a planar graph, X ⊆ V (G),
κG(X) ≥ 4, E ⊆ E(G[X]), and |E| ≤ 2. Then G has a cycle containing X and E.

Here we prove the forthcoming Theorem 4, which extends Theorem 2.

Theorem 4. Let G be a planar graph, X ⊆ V (G), κG(X) ≥ 4, and M ⊆ X
with |M | ≤ 2. Then G−M contains a cycle containing X rM .

In case X = V (G), Theorem 2 is a consequence of Theorem 4; thus, the condi-
tions κG(X) ≥ 4 and |M | ≤ 2 cannot be weakened.

*

Before we start to prove our Theorem 4, we introduce the concept of bridges
and Tutte paths which the proofs of Theorems 1 and 2 are principally based on.
Therefore, let G be a 2-connected graph embedded into the plane, H be a subgraph
of G, V (G) r V (H) 6= ∅, and F be a component of G− V (H). If NG(F ) ⊆ V (H)
is the set of neighbours of F in V (H), then B with V (B) = V (F ) ∪ NG(F ) and
E(B) = E(F ) ∪ {uv ∈ E(G) | u ∈ V (F ), v ∈ V (H)} is a non-trivial bridge of
H, where NG(F ) and V (F ) are called the set T (B) of touch vertices and the set
I(B) of inner vertices of B, respectively. It should be added that a trivial bridge
is a subgraph of G isomorphic to K2 with both end vertices but not its edge in
H. Since we are interested in bridges containing a vertex of X, all references to
bridges focus to non-trivial ones.

The exterior cycle of G is the cycle CG bounding the infinite face of G. Thomas
and Yu [6] generalized the terms of Tutte in the following sense. Let E ⊆ E(G)
for a graph G, then a path P of G on at least two vertices is an E-snake of G
if each bridge of P has at most three touch vertices and each bridge containing
an edge of E has two touch vertices. A Tutte path in its original meaning is an
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E(CG)-snake. A cycle C of G is an E-sling of G if C − e for some e ∈ E(C) is an
E-snake.

Tutte [8] proved that, for x, y ∈ V (CG) and e ∈ E(CG), G contains a Tutte path
from x to y containing e. Thomassen [7] improved Tutte’s result by removing the
restriction on the location of y, and, eventually, Sanders [5] established Lemma 1.

Lemma 1 (Sanders [5]). If G is a 2-connected plane graph, e ∈ E(CG), and
x, y ∈ V (G), then G has an E(CG)-snake from x to y containing e.

Tutte’s result is also generalized by Thomas and Yu.

Lemma 2 (Thomas, Yu [6]). If G is a 2-connected plane graph with outer cycle
CG, another facial cycle C2, and e ∈ E(CG), then G has an (E(CG)∪E(C2))-sling
C such that e ∈ E(C) and no C-bridge contains edges of both CG and C2.

Before we start the proof of Theorem 4, we prove a lemma that provides a
sufficient connectivity of G.

Lemma 3. Let G be a graph, S ⊂ V (G) be a minimal V (G)-separator of
G, and F be a component of G − S. Furthermore, let X ⊆ V (F ) ∪ S and
G′ = G(V (F ), S) be the graph obtained from G[V (F ) ∪ S] by adding all possi-
ble edges between vertices of S (if not already present). Then κG′(X) ≥ κG(X).
Furthermore, G′ = G(V (F ), S) is planar if G is planar and |S| ≤ 3.

Proof. The first part follows from Lemma 2 in [2]. Minimality of S ensures the
planarity of G(V (F ), S). �

Proof of Theorem 4.
Suppose, to the contrary, that Theorem 4 does not hold and let G,X,M form a
counterexample such that |V (G)| is minimum. By Lemma 3, M 6= ∅. Here we
consider just the case that M = {x1, x2} and x1 6= x2. The case x1 = x2, i. e.
|M | = 1, follows with the same forthcoming arguments and is left to the reader.

If G is not 2-connected, then there will be a block F of G with X ⊆ V (F ) since
κG(X) ≥ 4. By Lemma 3, κF (X) ≥ 4 and F is a smaller counterexample than G,
a contradiction.

Assume that G is embedded in the plane such that x1 is incident with the
outer face and consider G − {x1, x2}. Since |X| ≥ 5 (because κG(X) ≥ 4) and
κ(G−{x1,x2})(X r {x1, x2}) ≥ 2, there is a block H of G containing X r {x1, x2}.

Assume there is a component K of G − ({x1, x2} ∪ V (H)) and let NG(K) be
the neighbours of K in G. Because H as a block of G is a maximal 2-connected
subgraph, it follows |NG(K) ∩ V (H)| ≤ 1. Obviously, NG(K) r V (H) ⊆ {x1, x2}
and, therefore, |NG(K)| ≤ 3. Consider the graph G′ obtained from G by removing
V (K) and adding all edges between the vertices of NG(K). Then G′ is planar since
|NG(K)| ≤ 3 and, furthermore, κG′(X) ≥ 4 (see Lemma 3). By the choice of G,
there is a cycle C of G′ containing all vertices of X except x1 and x2. Evidently,
C misses all new edges between the vertices of NG(K), thus, C is also a cycle of
G, a contraction. We conclude that H = G− {x1, x2}.
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For j = 1, 2, there are (not necessarily distinct) faces αj of H containing the
vertex xj in G and let Cj be the facial cycle of αj in H. Because of the choice of
the embedding of G, α1 is the outer face of H, thus, CH = C1.

We follow the proof in [6] and assume first that C1 = C2. If α1 6= α2, then
H = C1 and C1 is the desired cycle. Otherwise, the vertices of V (C1) can be
numbered with v1, v2, . . . , vk according to their cyclic order in a such way that
x2 is not adjacent to vertices v2, v3, . . . , vi−1 and x1 is not adjacent to vertices
vi+1, vi+2, . . . , vk for some integer i with 3 ≤ i ≤ k − 1; note that x1 and x2 have
degree at least 4 in G. We apply Lemma 1 and consider an E(C1)-snake Q of H
from v1 to v2 containing vivi+1 which can be joined by v1v2 to a cycle. Since G is a
counterexample, there is x ∈ Xr(V (Q)∪{x1, x2}) and a bridge B of Q containing
x as an inner vertex. If I(B)∩V (C1) = ∅, then NG(x1)∩V (B) ⊆ T (B) and T (B)
separates x from x1 in G, contracting κG(X) ≥ 4. If v ∈ I(B) ∩ V (C1), then the
edge uv, where u is a neighbour of v at C1, belongs to B. Especially, u ∈ V (B)
and B has exactly two attachment points s and t in V (Q) and s, t ∈ V (C1). Thus,
the subpath P of C1 from s to t containing v is a path of B. If (I(B) ∩ V (C1)) r
V (P ) 6= ∅, then there would be another subpath P ′ of C1 connecting s and t with
V (P ′) ⊆ V (B); hence, E(C1) = E(P ) ∪ E(P ′), contradicting vivi+1 ∈ E(Q).

Furthermore, v1, vi /∈ I(B) and (I(B) ∩ V (C1)) ∩ NG(xj) = ∅ for one j ∈
{1, 2}. But then NG(xj)∩ V (B) ⊆ T (B) and T (B)∪ {x3−j} separates x from xj ,
contracting κG(X) ≥ 4.

Thus, C1 6= C2, and by Lemma 2, there is a (E(C1) ∪E(C2))-sling C. Since G
is a counterexample, there is x ∈ X r V (C) and a bridge B of C containing x as
an inner vertex and not simultaneously edges from both cycles C1 and C2. Hence,
I(B) ∩ V (C1) = ∅ or I(B) ∩ V (C2) = ∅ and – in both cases – T (B) separates x
from x1 or x2 in G, contracting κG(X) ≥ 4.

This completes the proof of Theorem 4. �
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