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MAXIMAL EDGE-COLORINGS OF GRAPHS

S. BABINSKI AND A. GRZESIK

ABSTRACT. For graph G of order n a maximal edge-coloring is a proper partial
coloring with x/(K,) colors such that adding any edge to G in any color makes it
improper. Meszka and Tyniec proved that for some numbers of edges it is impossible
to find such a graph, and provided constructions for some other numbers of edges.
However, for many values, the problem remained open. We give a complete solution
of this problem for all even values of n and for odd n > 37.

1. INTRODUCTION

In combinatorics there are a lot of problems that are associated with maximality
of a family of some objects. When we have a subset of the space of objects that
satisfies some fixed properties we say it is maximal when adding to this set any
new element from the space results in violeting our conditions. Various types
of such spaces were investigated: one-factors of K, [3], two-factors of K, [6],
triangle-factors of K3, [9] and latin cubes [2], just to name a few.

One of the best-known problems in the field is related with maximal partial
latin squares [7]. A partial latin square is an array with n rows and n columns
such that each of its entries is filled with a number from 1 to n or left empty
and each number can appear in every column and every row at most once. For
an exhaustive survey on latin squares see [4]. The problem of determining how
many non-empty cells a maximal partial latin square can have is equivalent to the
problem of determining how many edges can be in the maximal partial coloring of
a bipartite graph G = (U, V; E) with n = x/(K,,») colors, where |U| = |V| = n.

As a natural consequence of the above problem, and taking into account the
fact that the theory of on-line maximal edge coloring was developed ([1], [5]),
Meszka and Tyniec in [8] analyzed maximal partial colorings of K, with x/(K,)
colors. The main problem is to determine for which values of m there exists a
partial proper coloring of K, with exactly m edges colored such that coloring any
other edge makes it improper. The problem has been partially solved, although
for m € [irﬂ — %n—k 1; %nQ — 1] when n is an even number, for m = inz + 1 when

1.1

n = 2 (mod 4) and for m € [{n* — in; in® + In — 1] when n is odd it remained
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open. By analysis of the properties and structure of graphs that yield a maximal
edge coloring, we managed to solve the problem completely for all even values of
n and for big enough odd values of n (namely, n > 37).

2. STATEMENT OF THE PROBLEM

The edge chromatic number of a complete graph of n vertices, where n > 2 (de-
noted by x'(K,)) is equal to n — 1, when n is an even number and n, when n is an
odd number. We say that a fixed graph G of order n has mazimal edge coloring if
there exists a proper edge coloring of G with x/(K,) colors (which set will be de-
noted by C) such that attaching any edge in arbitrary color from the set C' to the
graph G will make the coloring improper. Clearly, not every graph has a maximal
edge coloring. That is why for the fixed number n € N, n > 3 we define a spectrum
(denoted by M EC(n)) as a set of all numbers of edges m for which there exists
a graph of order n and size m that has a maximal edge coloring;:

MEC(n) = {m € N: there exists a graph G such that |[V(G)| =n
and |E(G)| = m which has a maximal edge coloring}.

We say that vertex v € V(G) can see some color ¢ € C if there exists an edge
colored ¢ adjacend to v. If a coloring is edge-maximal, then any vertices u, v such
that uv ¢ E must see togheter all colors.

A problem of determing MEC(n) for n > 3 was studied by Meszka and
Tyniec [8]. In their paper they proved the following two theorems.

Theorem 1. Let n be an even number, n > 10.
elfin? <m< gn?—in=(3), m# (5) —1, and for n = 2 (mod 4),
m # in? + 1, then m € MEC(n).
e If0O<m< in?—2n orm= () — 1, then m ¢ MEC(n).

Theorem 2. Let n be an odd number, n > 10.
e Ifin*+in—3<m<in?—1in=(}), then m e MEC(n).

2
e If0<m< gn*— in—1, then m ¢ MEC(n).

1
1

Morover, by computer analysis the spectra for 3 < n < 10 were completely
determined.

From the above theorems it is clearly seen that the problem has not been solved
for m € [n? — 2n+1,in? — 1] when n > 12 and even, for m = in? + 1 when
n > 14, n =2 (mod 4) and for m € [in? — in,in? + In — I] when n > 11 and
odd.

3. MAIN RESULTS

We continued the investigation of maximal partial colorings of K,, and by analysis
of the structure and properties of graphs that yield a maximal edge-coloring, we
managed to show that for all values of m for which the problem remained open, it
is not possible to construct a graph of size m that has a maximum edge-coloring.
This solves the problem completely for even n and for odd n not smaller than 37.
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More exactly, we proved the following three theorems.

Theorem 3. Let n be an even number, n > 4. If m € MEC(n), then
m > %nQ.

Theorem 4. Let n be an even number, n > 14, n = 2 (mod 4). Then
in*+ 1 ¢ MEC(n).

Theorem 5. Let n be an odd number, n > 37. If m € MEC(n), then
1,2 3

m > in° + %n - 5.

To prove Theorem 3 we compute the bound for the number of edges that the
sum of degrees of non-adjacent vertices implies, and consider a stucture of a graph
that yields a maximal edge-coloring. To prove Theorem 4 it is essential to analyze
the structure of a graph and the distribution of colors. The proof of Theorem 5
uses similar techniques but is more complicated because of bigger number of cases
and more complex structures that appear.

4. OVERVIEW OF THE PROOF FOR EVEN n

The proof of Theorem 3 consists of two cases which are the consequences of a
natural observation: if we have a maximal edge-coloring of a graph, then every
pair of non-adjacent vertices u,v € V must see toghether all x'(K,,) = n—1 colors,
thus deg(u) + deg(v) > n — 1 for every u,v € V such that uv ¢ E. The first case
is that for all non-adjacent pairs of vertices, the sum of their degrees is at least n.
By suming up these inequalities over all such pairs, it is possible to show that m
must be at least inQ. In the second case, there exists a not connected pair of
vertices u,v € V with sum of degrees equal to n — 1. If A is the set of colors that
u can see, then v must see the set A of all the remaining colors. It can be also
proven that v and v must have exactly one common neighbor w and the set of
vertices V \.{u,v,w} can be split into two subsets: the set X of vertices connected
with v and the set Y of vertices connected with v. This situation is presented on
Figure 1. If we use information about this structure, we can estimate from below
the sum of degrees of all vertices, which gives the desired number of edges.

To prove Theorem 4, we notice that if a graph has a maximal edge-coloring and
number of edges equal to ing +1, then it has very specific structure and distrubion
of colors. Such a structure and discribution do not exist as we need an additional
edge to keep the coloring maximal.

5. OVERVIEW OF THE PROOFS FOR ODD n

For odd n there are x'(K,) = n colors, thus for any two non-adjacent vertices u, v
we have deg(u)+deg(v) > n. This time we need to consider three cases. In the first
case we assume that deg(u) 4+ deg(v) > n + 2 for any pair of non-adjacent vertices
and we sum up the inequalities over all pairs of non-adjacent vertices to obtain
the desired number of edges. The second case is that there exists a non-adjacent
pair of vertices u, v such that deg(u) + deg(v) = n. We obtain a similar structure
which was presented in the overview of the proof for even n. The differences are
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Figure 1. The structure of a graph of even order n that yields a maximal coloring when there
are two vertices of sum of degrees equal to n — 1. Dashed red edges indicate colors from the
set A, solid blue edges — colors from the set A.

that now u and v have exactly two common neighbors and to obtain appropriate
number of edges, we aditionally need to use the fact that one of the sets: X U {u}
or Y U {v} forms a clique of even order with edges in colors only from A or from
A, and also that there exists a perfect matching in one of the colors.

Figure 2. The graph of odd order n in the third case of the proof of Theorem 5. Dashed red
edges indicate colors from the set A U {c}, the solid blue edges — colors from the set AU {c}.

In the third case we assume that any pair of non-adjacent vertices has sum of
degrees at least n 4+ 1 and there exists a non-adjacent pair u,v € V such that
deg(u) + deg(v) = n+ 1. Then u and v can see exactly one common color ¢, so
u can see colors from A U {c} and v can see colors from A U {c}, where A is the
complement of AU {c}. They must have also exactly three common neighbors: «,
B and 7. All vertices from V ~\ {u,v, «, 8,7} are connected with one of the vertices
w and v and we can write this set as a disjoint union of four sets: X,Y, XY,
where X UY is the set of vertices connected with u, but the elements of X can see
color ¢, while the elements of Y cannot see it (in analogical way we define sets X
and Y of vertices connected with v). Aditionally, each pair of vertices y € Y and
7 € Y must be connected. This situation is presented on the Figure 2. We have
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to consider four cases depending on the number of elements of smaller of the sets
Y and Y to complete the argument.

In this last case of the proof for odd n, estimations that we used require to
have n > 37. Smaller values of n would require longer and more careful analysis of
significantly more cases, which would make the paper extremaly technical. Taking
into consideration the fact that we have a lot of information about the structure
of graphs that yield maximal edge-coloring, it is possible to determine the spectra
for these values by exhaustive computer analysis of the described cases. Thus we
decided to omit those smaller values of n.
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