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COHOMOLOGY GROUPS OF NON-UNIFORM RANDOM

SIMPLICIAL COMPLEXES

O. COOLEY, N. DEL GIUDICE, M. KANG and P. SPRÜSSEL

Abstract. We consider a model of a random simplicial complex generated by tak-
ing the downward-closure of a non-uniform binomial random hypergraph, in which

each set of k + 1 vertices forms an edge with some probability pk independently,

where pk depends on k and on the number of vertices n. We consider a notion of
connectedness on this model according to the vanishing of cohomology groups over

an arbitrary abelian group R. We prove that this notion of connectedness displays

a phase transition and determine the threshold. We also prove a hitting time result
for a natural process interpretation, in which simplices and their downward-closure

are added one by one.

1. Introduction

1.1. Motivation

One of the first and most famous results in the theory of random graphs, due
to Erdős and Rényi [5], states that the uniform random graph G(n,m) displays
a phase transition threshold for the property of being connected at about m =
1
2n log n. Almost equivalenty, in modern terminology, the binomial random graph

G(n, p) becomes connected around p = logn
n . The result was subsequently strength-

ened by Bollobás and Thomason [1] to a hitting time result – the random graph
process, in which edges are added to an empty graph one by one in a uniformly
random order, is very likely to become connected at exactly the moment at which
the last isolated vertex disappears (i.e. acquires an edge), which occurs around

time p = logn
n .

There have been many generalisations of these results to higher-dimensional
analogues of graphs, including hypergraphs (e.g. [3, 7]) and simplicial complexes
(e.g. [2, 7, 8, 9])

In this paper we prove a generalisation for a model of simplicial complexes aris-
ing from non-uniform binomial random hypergraphs. The notion of connectedness
that we study regards the vanishing of cohomology groups over an abelian group.
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This extends recent results of [2] in two important ways: firstly in that the random
hypergraph used to generate the random complex is non-uniform, having differ-
ent probabilities for each edge size; and secondly in that we consider cohomology
groups over any abelian group R, rather than just over F2. It is also closely related
to results of Linial and Meshulam [8], Meshulam and Wallach [9], and Kahle and
Pittel [7], although the model of random simplicial complexes that we consider is
different and leads to significantly more complex behaviour.

1.2. Model

Throughout the paper let d ≥ 2 be a fixed integer and let R be an abelian group
with at least two elements. We use additive notation for the group operation of
R and denote its neutral element by 0R. Given an integer k, we write [k] :=
{1, . . . , k}.

We define a model of a random d-complex generated from a non-uniform random
hypergraph, in which sets of vertices have different probabilities of forming an edge
depending on their size.

Definition 1.1. For each k ∈ [d], let pk = pk(n) ∈ [0, 1] ⊂ R be given and write
p := (p1, . . . , pd). Denote by Gp = G(n,p) the (non-uniform) binomial random

hypergraph on vertex set [n] in which, for all k ∈ [d], each element of
(

[n]
k+1

)
forms

a hyperedge with probability pk independently. By Gp = G(n,p), we denote the
random d-dimensional simplicial complex on [n] such that

• the 0-simplices of Gp are the singletons of [n] and
• for each i ∈ [d], the i-simplices are precisely the (i + 1)-sets which are

contained in hyperedges of Gp.

In other words, Gp is the downward-closure of the set of hyperedges of Gp, together
with all singletons of [n] (if those are not already in the downward-closure).

Recently, a similar but slightly more general model was independently intro-
duced in [6]. This model has a similar flavour to the multi-parameter model
introduced by Costa and Farber [4].

Denote by Hi(G;R) the i-th cohomology group of a simplicial complex G with
coefficients in R. It is well-known that H0(G;R) = R if and only if G is connected
in the topological sense (see e.g. [10, Theorem 42.1]), which we call topologically
connected in order to distinguish it from other notions of connectedness. For any
positive integer i, the vanishing of Hi(G;R) can be viewed as a “higher-order
connectedness” of G.

Definition 1.2. Given a positive integer j, a simplicial complex G is called
R-cohomologically j-connected (j-cohom-connected for short) if

(i) H0(G;R) = R ;
(ii) Hi(G;R) = 0 for all i ∈ [j].

1.3. Main results

The main aim of this paper is to provide an analogue of the graph results of Erdős
and Rényi [5] and of Bollobás and Thomason [1] for the Gp model of random
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simplicial complexes. Given an appropriate direction p̄, we consider the random
simplicial complex process (Gτ ) = (Gτ p̄)τ∈R≥0

(defined more formally later) and
describe for which values of τ the complex is j-cohom-connected and for which it
is not, relating this threshold to the disappearance of the last minimal obstruction.

In order to define the minimal obstructions M̂k
j , we introduce the following

necessary concepts.

Definition 1.3. Let j ∈ [d−1] and let k be an integer with j+1 ≤ k ≤ d. Given
a k-simplex K in a d-dimensional simplicial complex G, we say that a collection
F = {P0, . . . , Pk−j} of j-simplices forms a j-flower in K (see Figure 1) if

(F1) K =
⋃k−j
i=0 Pi ;

(F2) C :=
⋂k−j
i=0 Pi satisfies |C| = j.

We call the j-simplices Pi the petals and the set C the centre of the j-flower F .
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Figure 1. Examples of j-flowers in a k-simplex K, for k = 4 and j = 1, 2, 3.

(i) The 1-flower in K with centre C = {c1} (bold black) and petals Pi = C ∪ {wi}, i = 0, 1, 2, 3

(grey).

(ii) The 2-flower in K with centre C = {c1, c2} (bold black) and petals Pi = C ∪{wi}, i = 0, 1, 2
(grey).

(iii) The 3-flower in K with centre C = {c1, c2, c3} (bold black) and petals Pi = C∪{wi}, i = 0, 1

(grey).

Observe that for each k-simplex K and each (j − 1)-simplex C ⊆ K, there is a
unique j-flower in K with centre C, namely

(1) F(K,C) := {C ∪ {w} | w ∈ K r C}.

Definition 1.4. For any (j + 2)-set A in a complex G, the collection of all
(j + 1)-sets of A is called a j-shell if each of them forms a j-simplex in G.

If the collection of all (j + 1)-subsets of a (j + 2)-set A forms a j-shell, with a
slight abuse of terminology we also refer to the set A itself as a j-shell.

Definition 1.5. For j+ 1 ≤ k ≤ d, a 4-tuple (K,C,w, a) is said to form a copy

of M̂k
j if

(M1) K is a k-simplex in G;
(M2) C is a (j − 1)-simplex in K such that every simplex of G that contains a

petal of the flower F = F(K,C) is contained in K;
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(M3) w ∈ K rC and a ∈ [n]rK are such that C ∪ {w} ∪ {a} is a j-shell in G.

We call the j-simplex C ∪ {w} the base and a the apex vertex of the j-shell C ∪
{w} ∪ {a}. Every other j-simplex in C ∪ {w} ∪ {a} is called a side of the j-shell.

A copy of M̂k
j is an obstruction to the vanishing of Hj(G;R), since it is easy

to define a bad function, i.e. a j-cocycle which is not a j-coboundary, by choosing
any non-zero element r ∈ R r {0R} and assigning the values ±r to the (ordered)

petals in an appropriate way. Furthermore, it can be shown that a copy of M̂k
j is

a minimal obstruction in terms of the size of the support of a bad function.
The random d-complex Gp can be turned into a process, by assigning a birth

time to each k-simplex. More precisely, for each k ∈ [d] and each (k + 1)-set

K ∈
(

[n]
k+1

)
independently, sample a birth time uniformly at random from [0, 1].

Then Gp is exactly the complex generated by the (k + 1)-sets with birth times at
most pk, for all k ∈ [d], by taking the downward-closure. If we fix a “direction”
p̄ = (p̄1, . . . , p̄d) of non-negative real numbers with p̄d 6= 0, set

p = τ p̄ := (min{τp1, 1}, . . . ,min{τpd, 1}),

and gradually increase τ from 0 to τmax := 1/p̄d, then Gp becomes a process in
which simplices (together with their downward-closure) arrive one by one. We will
denote this process by (Gτ p̄)τ , or sometimes just by (Gτ ) when the direction p̄ is
clear from the context.

Given a direction p̄, and a (k + 1)-set K with birth time tK , the scaled birth
time of K is

τK :=
tK
p̄k
.

Thus τK is distributed uniformly in [0, p̄−1
k ], and Gτ = Gτ p̄ consists of all those

simplices with scaled birth time at most τ , together with their downward-closure.
With some elementary arguments we can show that, when considering j-cohom-

connectedness, it suffices to consider a direction p̄ with some specific properties,
namely that for each 1 ≤ k ≤ d there are constants ᾱk, γ̄k and a function β̄k =
β̄k(n) such that

(2) p̄k =
ᾱk log n+ β̄k
nk−j+γ̄k

(k − j)!,

and furthermore

(P1) at least one of ᾱk, γ̄k is zero and neither of them is negative;
(P2) if ᾱk = 0, then β̄k is either zero or it is positive and subpolynomial in the

sense that for every constant ε > 0, we have β̄k = o(nε), but β̄k = ω(n−ε);
(P3) if γ̄k = 0, then |β̄k| = o(log n);
(P4) there exists an index j + 1 ≤ k0 ≤ d with ᾱk0 > 0.
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Additionally, for all indices k with j ≤ k ≤ d and p̄k 6= 0, if we define the
parameters

λ̄k := j + 1− γ̄k − (k − j + 1)

d∑
i=j+1

ᾱi,

µ̄k := −(k − j + 1)

d∑
i=j+1

β̄i
nγ̄i

+

{
log log n if ᾱk 6= 0,

log(β̄k) if ᾱk = 0,

ν̄k :=


− log((j + 1)!) if k = j,

− log(j!)− log(k − j + 1) + log(ᾱk) if ᾱk 6= 0,

− log(j!)− log(k − j + 1) otherwise,

(3)

then we may assume that

(C1) λ̄k log n+ µ̄k + ν̄k ≤ 0, for all indices k with j ≤ k ≤ d and p̄k 6= 0,
(C2) λ̄k̄ log n+ µ̄k̄ + ν̄k̄ = 0, for some k̄ with j ≤ k̄ ≤ d.

The definitions of the parameters λ̄k, µ̄k, ν̄k are motivated by Lemma 2.2. We
call a direction p̄ satisfying (P1)–(P4) and (C1)–(C2) a j-critical direction.

Theorem 1.6. For j ∈ [d−1] and a j-critical direction p̄, let p∗ = τ∗p̄, where

τ∗ := sup{τ ∈ R≥0 | Gτ p̄ contains a copy of M̂k
j for some j ≤ k ≤ d}.

Then for every function ω of n which tends to infinity as n → ∞, the following
statements hold with high probability.

(i) τ∗ = 1 + o
(

ω
logn

)
.

(ii) The random d-complex process (Gτ ) = (Gτ p̄)τ is not R-cohomologically
j-connected for all τ < τ∗, i.e.

H0(Gp;R) 6= R or Hi(Gp;R) 6= 0 for some i ∈ [j],

for p = τ p̄ and for τ ∈ [0, τ∗).
(iii) The random d-complex process (Gτ ) = (Gτ p̄)τ is R-cohomologically j-

connected for all τ ≥ τ∗, i.e.

H0(Gp;R) = R and Hi(Gp;R) = 0 for all i ∈ [j],

for p = τ p̄ and for τ ∈ [τ∗, τmax].

Let us note that neither j-cohom-connectedness nor the presence of copies of M̂k
j

are necessarily monotone properties, which makes the proofs significantly harder.
Indeed, it is not immediately clear that j-cohom-connectedness should have a single
threshold – in principle, Gτ = Gτ p̄ could switch between being j-cohom-connected
or not several times. However, Theorem 1.6 implies that with high probability it
does not.
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2. Minimal obstructions and the hitting time

Let us now define a ‘reduced’ version of M̂k
j , denoted by Mk

j , by omitting the
condition (M3) on the j-shell C ∪{w}∪{a} in Definition 1.5. It is easy to see that
this shell is very likely to exist if τ is ‘large enough’ (τ ≥ ε/(log n) will do), which
will be the case well before the critical range for the disappearance of Mk

j . Thus

it is convenient to switch attention from M̂k
j to Mk

j .

Definition 2.1. Let k be an integer with j+1 ≤ k ≤ d. A pair (K,C) is called
a copy of Mk

j if it satisfies the following conditions.

(M1) K is a k-simplex in G;
(M2) C is a (j − 1)-simplex in K such that every simplex of G that contains a

petal of the flower F = F(K,C) is contained in K.

For k = j, an isolated j-simplex is called a copy of M j
j and of M̂ j

j .

Lemma 2.2. Suppose τ = O(1) and p̄ is a direction vector satisfying (P1)–
(P4). Then the number Xk

j of copies of Mk
j in Gτ satisfies

(4) logE(Xk
j ) = λk log n+ µk + νk + o(1)

for all j ≤ k ≤ d with pk 6= 0, where λk, µk, νk are defined analogously to (3) for
p = τ p̄ instead of p̄.

Since p̄ in Theorem 1.6 was chosen to be j-critical, i.e. such that the right hand
side of (4) is at most o(1) for all k and for p = p̄, this tells us that heuristically,
the last minimal obstruction should disappear around time τ = 1.

Indeed, let τ ′ denote the smallest scaled birth time τ ≥ 1 − log logn
10d logn such that

Gτ is Mk
j -free for all k. Extending Lemma 2.2 with a second moment argument

shows that τ ′ is close to 1 with high probability. Furthermore, we can also show
that new copies of Mk

j are unlikely to appear after time 1 − o(1). Together with

the fact that the existence of Mk
j and M̂k

j are essentially equivalent events, we
obtain the following corollary.

Corollary 2.3. Let ω = ω(n) be a function that tends to infinity as n → ∞.
Then with high probability

1− ω

log n
< τ∗ = τ ′ < 1 +

ω

log n
.

3. Covering the subcritical case

To prove statement (ii) of Theorem 1.6, we first observe that initially the process
is not topologically connected.

Lemma 3.1. There exist positive constants c− = c−(d) and c+ = c+(d) such
that

(i) Whp Gp is not topologically connected if pi ≤ c− logn
ni for all i ∈ [d];

(ii) Whp Gp is topologically connected if pi ≥ c+ logn
ni for some i ∈ [d].
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The proof is an elementary extension of the graph case: for (i) we use a second
moment method to show that with high probability there are isolated vertices.
Statement (ii) can be proved analogously to the graph case, or follows as a special
case of far stronger results in [3] or [11].

Subsequently, we proceed by induction on j, and the induction hypothesis tells

us that up to time τ = Θ(1)
n , whp the process is not even (j−1)-cohom-connected.

(Lemma 3.1 effectively provides the base case j = 0 of the induction.) It remains
to cover the range τ ∈ [ε/n, τ∗) for some sufficiently small constant ε. We achieve
this by splitting the range into three subintervals.

Lemma 3.2. For every constant ε > 0 there exists a constant δ > 0 such that
the following is true. Let

I1 :=

[
ε

n
,
δ

n

]
, I2 :=

[
δ

n
, 1− 1

(log n)1/3

]
, I3 :=

[
1− 1

(log n)1/3
, τ∗
)
.

Then with high probability there exist k1, k2, k3 and for each i = 1, 2, 3 a copy of
M̂ki
j that is present throughout the range Ii.

The proof strategy is to show, via a second moment argument, that there are
many copies of M̂k

j for some k at times τ = ε/n and τ = 1− 1
(logn)1/3

, and therefore

with high probability at least one of these survives until the end of I1 or was born
by the start of I2 respectively. On the other hand, since τ∗ = 1+o(1) whp, the last

copy of M̂k
j to disappear at time τ∗ was already present at any time τ = 1− o(1)

whp, and therefore whp exists throughout the range I3.

4. Supercritical case

To prove statement (iii) of Theorem 1.6, we need to show two things: firstly, that
whp Gτ is j-cohom-connected at time τ = τ∗, and secondly that whp it does not
become disconnected later.

In order for Gτ not to be j-cohom-connected, it would have to admit a j-cocycle
fτ which is not a coboundary: we call such a function fτ a bad function, and denote
its support by Sτ . Indeed, we may assume that Sτ is the smallest possible support
among all such bad functions in Gτ .

The next lemma immediately implies that for any single choice of τ ≥ τ∗, whp
Gτ is j-cohom-connected.

Lemma 4.1. Suppose that τ ≥ τ∗.
(i) Let h ∈ R be any large constant. Then with high probability |Sτ | > h, if

it exists.
(ii) There exists a constant h̄ ∈ R such that with high probability |Sτ | < h̄, if

it exists.

Indeed, we even prove a little more than this, showing that if τ∗ > τ = 1−o(1),

then the only obstructions to j-cohom-connectedness are copies of M̂k
j .

The proof of this lemma exploits a very useful property of such a minimal
support Sτ which we call traversability, and which in particular implies that Sτ
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can be explored via a search process. This allows us to bound the number of
possible configurations for Sτ . In case (ii) we also use a result from [9] to give a
lower bound on the number of simplices which must not be present in order for Sτ
to form the support of a j-cocycle.

Finally, to prove that whp the process (Gτ ) never becomes disconnected again
at any time τ > τ∗, we first prove that in order for a bad function fτ to appear
with the birth of a simplex K, its support Sτ would have to be K-localised in the
sense that within Gτ∗ any simplex containing an element of Sτ must lie entirely
within K. We then show that with high probability in Gτ∗ there are not many
candidate positions for where such a simplex K might be born, and the probability
that any one of these is born before any of the simplices that would prevent Sτ
from being K-localised is very small, so whp no new bad function will appear.
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(Poznań, 1983), North-Holland Math. Stud. 118, North-Holland, Amsterdam, 1985, 47–97.
2. Cooley O., Del Giudice N., Kang M. and Sprüssel P., Vanishing of cohomology groups of

random simplicial complexes, Random Structures Algorithms (2019), https://doi.org/10.

1002/rsa.20857.
3. Cooley O., Kang M. and Koch C., Threshold and hitting time for high-order connectedness

in random hypergraphs, Electron. J. Combin. 23 (2016), #2.48.

4. Costa A. and Farber M., Random simplicial complexes, Configuration spaces, 129–153,
Springer INdAM Ser. 14, Springer, [Cham], 2016.
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